Stoc lat
1911–2011

Instytutu Przemysłu Fermentacyjnego prekursora
INSTYTUTU BIOTECHNOLOGII PRZEMYSŁU ROLNO-SPOŻYWCZEGO (IBPRS)
W WARSZAWIE
STO LAT
1911–2011

Instytutu Przemysłu Fermentacyjnego prekursora
INSTYTUTU BIOTECHNOLOGII PRZEMYSŁU ROLNO-SPOŻYWCZEGO (IBPRS)
W WARSZAWIE

Warszawa
2012
Redakcja
Prof. dr hab. Roman A. Grzybowski – koordynator
Prof. dr hab. Andrzej Brudzyński
Dr hab. inż. Krystyna M. Stecka, prof. IBPRS
Dr Anna Misiewicz
Dr inż. Sylwia Skąpska
Dr inż. Elżbieta Baca
Dr hab. inż. Renata Jędrzejczak, prof. IBPRS
Mgr Wojciech Górniak
Mgr inż. Katarzyna Kotarska
Dr inż. Marian Remiszewski, prof. IBPRS
Dr inż. Elżbieta Polak
Dr hab. inż. Andrzej Borys, prof. IBPRS
Dr inż. Andrzej Baryga
Mgr Renata Siwek
Mgr inż. Anna Nurek
Mgr inż. Anna Bednarek

Projekt i opracowanie graficzne
Kinga Wesołowska

Wydawca
Instytut Biotechnologii Przemysłu Rolno-Spożywczego
ul. Rakowiecka 36
02-532 Warszawa
www.ibprs.pl

© Copyright by Instytut Biotechnologii Przemysłu Rolno-Spożywczego
Warszawa 2012

ISBN 978-83-933341-0-0

Nakład: 500 egz.
Spis treści

Słowo wstępne ... 9
Pierwsze wzloty i upadki oświaty i nauki polskiej ... 11
Profesor dr Wacław Dąbrowski – twórca IPF .. 14
Instytut Przemysłu Fermentacyjnego w latach międzywojennych 16
Przetrwanie okupacji niemieckiej .. 18
Czasy PRL-u ... 19
Siedziby Instytutu ... 21
Organizacja IPF .. 23
Aktualna organizacja Instytutu (IBPRS) .. 30
Zatrudnienie ... 34
Rozwój kadry .. 37
Rada Naukowa .. 47
Badania realizowane w IBPRS ... 55
Publikacje i Patenty .. 59
Zakład Technologii Fermentacji ... 65
Zakład Mikrobiologii .. 86
Zakład Technologii Przetworów Owocowych i Warzywnych 100
Zakład Technologii Piwa, Słodu i Żywności Prozdrowotnej 110
Zakład Analizy Żywności .. 118
Zakład Przetwórstwa Zbóż i Piekarstwa .. 140
Działy Pomocnicze IBPRS
 Zakład Informacji Naukowo-Technicznej ... 148
 Dział Planowania i Koordynacji Badań .. 152
 Stanowisko ds. Jakości ... 156
Dział Finansowo-Księgowy	163
Dział Spraw Pracowniczych	165
Dział Techniczny	165
Dział Administracyjny	167
Stanowisko ds. Bezpieczeństwa i Higieny Pracy	168
Pełnomocnik ds. Ochrony Informacji Niejawnych (OIN) z Podległą Kancelarią Tajną	168
Samodzielna Pracownia Gorzelnicza	169
Oddział Koncentratów Spożywczych i Produktów Skrobiowych (OK)	179
Oddział Chłodnictwa i Jakości Żywności (OCH)	207
Oddział Technologii Mięsa i Tłuszczu	225
Oddział Cukrownictwa	239
Związki Zawodowe	252
Przyszłość	255
Bibliografia	258
Załącznik nr 1 – Nagrody i wyróżnienia IBPRS	259
prof. dr hab. Wacław Dąbrowski
1879–1962
SŁOWO WSTĘPNE

Ten kto nie szanuje i nie ceni swej przeszłości, nie jest godzien szacunku, ani prawa do przyszłości.

J.P.

Po 60 latach istnienia firmy skonstatowaliśmy, że Instytut Biotechnologii Przemysłu Rolno-Spożywczego (IBPRS), do 1988 r. Instytut Przemysłu Fermentacyjnego (IPF), ma korzenie sięgające głębiej niż lata 40. XX wieku.

Analiza dokumentów wykazała, że historia Instytutu zaczęła się na początku ubiegłego wieku. Gdy w 1911 r. prof. Wacław Dąbrowski tworzył Instytut Przemysłu Fermentacyjnego i Bakteriologii Rolnej w Warszawie, będącej prowincjonalnym miastem państwa carów, nikt nie mógł przewidzieć, że za kilka lat będzie on służył wolnej Rzeczypospolitej, że będzie współtworzył podstawy naukowe dla rozwijającego się przemysłu rolnego w wolnym Państwie Polskim.

Jubileusz 100-lecia Instytutu jest okazją do przypomnienia dziejów tej szacownej i zasłużonej instytucji, oddania należnej czci jej założycielowi, prof. dr. Wacławowi Dąbrowskiemu, Jego wychowankom i współpracownikom, którzy przez następne pokolenia rozwijali myśl swego Mistrza.

Odwołując się do chwalebnej przeszłości budujemy teraźniejszość i patrzmy z optymizmem w przyszłość.

Od współczesnych zależy jak zostaną wykorzystane doświadczenia przeszłości w budowie lepszego jutra. Niech nas nie zrażają trudności. Przeciwności zawsze da się pokonać zgodnie z maksymą Wergiliusza „Labor omnia vincit” (Praca wszystko zwycięża).

Instytut przetrwał ciemną moc zaborów, dwie wojny światowe, okresy zniewolenia i trwa dzięki wytrwałości i woli entuzjastów nauki.

W związku z Jubileuszem przedstawiamy dzieje i sukcesy Instytutu oraz przypominamy ludzi, którzy je tworzyli.

W historię IPF, a później IBPRS włączamy informacje o jednostkach badawczych, które w ostatnim dziesięcioleciu skonsolidowały się z Instytutem tworząc duży, jedyny Instytut z zakresu przemysłu spożywczego o zasięgu ogólnokrajowym, podległy Ministerstwu Rolnictwa i Rozwoju Wsi.
Były to Instytuty i Centralne Laboratoria o niebagatelnym dorobku naukowym i dużyim znaczeniu dla gospodarki żywnościowej. W przedstawionych materiałach mogą występować luki. Wichry wojny zniszczyły wiele dokumentów, spustoszyły archiwa.

Składam serdeczne podziękowanie wszystkim, którzy pomagali w odtworzeniu historii Instytutu. Szczególnie dziękuję Państwu Dyrektorom Oddziałów, Kierownikom Zakładów i Działów za opracowanie materiałów składających się na całość tej publikacji.

Ad multos annos.
prof. dr hab. Roman A. Grzybowski
Dyrektor IBPRS
Drogi nauki polskiej w ciągu tysiąclecia istnienia państwa były wyboiste. Profesor dr A. Krzyżanowski w swym dziele „Dawna Polska”, wydanym w Warszawie, w roku 1857, na stronie 10. tomu pierwszego podaje, że „początki oświaty” wnieśli do Polski Benedyktyni, sprowadzeni z Włoch w 1008 roku przez Bolesława Chrobrego i osadzeni w wybudowanych przez niego klasztorach na Łysej Górze koło Kielc oraz w Siciachowie nad Wisłą. Autor ten wywodzi od księdza słowo księga i książka, bo tylko duchowni we wcześniejszym średniowieczu znali sztukę pisania i czytania. Dużo później powstał Uniwersytet Jagielloński i jego najsławniejszy student, Mikołaj Kopernik, w latach 1491–1495 słuchał m.in. wykładów Wojciecha z Brudzewa. Dzięki temu, że językiem wszystkich uczelni w Europie była łacina, mógł Kopernik bez problemów kontynuować w latach 1496–1501 swoje studia na uniwersytecie w Bolonii. Krakowska Akademia kwitła przez cały niemal wiek XVI. Dopiero konkurencja jezuitów sprowadzonych do Polski w 1565 roku przez biskupa warmińskiego Hozyusza i popieranych gorąco przez Zygmunta III Wazę, doprowadziła Uniwersytet Jagielloński do skrajnej nędzy i upadku.

Z upadkiem Powstania Kościuszkowskiego wszystko się skończyło. A zakończenie jazd reaktywowano w 1814 roku, żeby „wypłynął w umysłach ludów zgubny posiew Wielkiej Rewolucji Francuskiej”.

Ciemne lata rozbiorów

Nie od razu były takie ciemne. Uniwersytety w Wilnie i Krakowie działały nadal. Prace Komisji Edukacji Narodowej, czerpiącej obficie z dostępnych w tym czasie dzieł autorów Epoki Oświecenia, nie poszły na marne: wyzwoliły umysły i otworzyły drogę racjonalnemu myśleniu. 17 X 1816 r. w Warszawie powołano do życia szkołę leśnictwa. Jednocześnie otwarto w Kielcach szkołę górnictwa, a w Marymoncie pod Warszawą utworzono Instytut Agronomiczny, do którego tradycji nawiązuje dzisiejsze SGGW. Dzięki staraniom ks. Adama Czartoryskiego i ministra oświaty Potockiego, dawne szkoły prawniczą i lekarską połączone i poszerzając o 3 nowe wydziały utworzono Uniwersytet Warszawski, który po otrzymaniu aktu erekcyjnego nadanego przez cara Aleksandra I, w październiku 1816 roku, otrzymał nazwę „Aleksandrowski”
Pierwsze wzloty i upadki oświaty i nauki polskiej

„Muzealna” kolebka Instytutu Przemysłu Fermentacyjnego

Po zdaniu egzaminów dyplomowych, jako stypendysta Muzeum Przemysłu i Rolnictwa w Warszawie, Waclaw Dąbrowski wyjechał w roku 1908 zagranicę na studia specjalne w dziedzinie mikrobiologii technicznej i rolniczej oraz w dziedzinie technologii przemysłu rolnego. Zwiedzając „po drodze” pracownie mikrobiologiczne w Monachium, Wiedniu, Lipsku, Hale, Kilonii i Brukseli, studia te odbywał kolejno: w Instytucie Przemysłu Fermentacyjnego w Berlinie (1 II – 24 VI 1908); w Carlsberg Laboratorium pod kierunkiem słynnego mikrobiologa, prof. Emila Christiana Hansena (20 VIII 1908 – 2 IV 1909) i w końcu na Uniwersytecie w Getyndze (30 IV 1909 – 25 V 1910), gdzie obronił pracę doktorską pt. „Die Hefen
Wacław Dąbrowski – twórca IPF

Wyzolowany i opisany w ramach tej pracy szczep drożdży *Saccharomyces lactis Dombrowski* wszedł do licznych światowych kolekcji kultur drożdży, m.in. był w latach 1960. w kolekcji brytyjskiego instytutu browarnictwa (BRFI) w Nutfield. Później holenderskie autorki systematyki drożdży, panie Lodder i Kreger van Rij, zmieniły tę nazwę na *Kluyveromyces lactis* (ku czci swego rodaka) a nasi mikrobiolodzy pokornie się z tym pogodzili.

Instytut Przemysłu Fermentacyjnego w latach międzywojennych

Niezależnie od pracy na SGGW profesor Waclaw Dąbrowski był dyrektorem utworzonego przez siebie Instytutu Przemysłu Fermentacyjnego i doradcą DPMS (Dyrekcji Polskiego Monopolu Spirytusowego). Instytut Fermentacyjny w okresie międzywojennym prowadził działalność usługową na rzecz gorzelni rolniczych, organizowaną w ramach abonamentu, który był opłacany na daną kampanię przez właściciela gorzelni. Abonament obejmował doradztwo technologiczne, zaopatrzenie gorzelni w czyste kultury drożdży i bakterii mlekowych oraz odczynniki potrzebne do kontroli przerobu. Pełną kontrolę przebiegu produkcji i jej poziomu technicznego przeprowadzali dwukrotnie w czasie kampanii delegowani przez IPF instruktorzy. Kontrolowali oni m.in. zapisy w dzienniku przerobu, porównując je ze stanem faktycznym stwierdzonym w dniu kontroli. Opinie wydawane na podstawie tych badań stanowiły ocenę jakości pracy zakładu i jego kierownika. Niektórzy z tego zespołu instruktorów, jak inż. Stefan Kamiński, Wiktor Miszczak i Stanisław Kurowski, pracowali w tym samym charakterze po II wojnie światowej w „ZGOROLU” i była okazja wysłuchiwać ich długich opowieści o tamtych czasach.

Instytut Przemysłu Fermentacyjnego w latach międzywojennych

Profesor był członkiem Komisji Przemysłu Rolniczego Międzynarodowego Instytutu Rolniczego w Rzymie (http://www.sggw.pl).

Wykłady profesora W. Dąbrowskiego były doskonałe. Wszystko można było zanotować i wychodził z tego bardzo uporządkowany i poprawny tekst, który co roku był uzupełniany nowościami. Z czasów zaboru rosyjskiego zachował profesor wybitną awersję do wszystkich obcych terminów, zaśmiecających dziś tak powszechnie język polski. Sam doskonale znal rosyjski, niemiecki i francuski, ale obcojęzyczną temperaturę zastępował bardziej polskim terminem „ciepłota”, a nawet dla enzymów znalazł polską nazwę „zaczyny”.

Profesor był nie tylko doskoniałym wykładowcą ale także organizatorem i wychowawcą. Tym co jednało Mu ludzi i ułatwiało działalność była Jego wysoka kultura, wielki humanizm, doskonałość języka, trafność, a czasem i ciętość uwag, bystrość obserwacji i dowcip, nieodłączne cechy sylwetki profesora. Jego dydaktyczno-wychowawcze pouczenia starci wychowankowie zapamiętali na zawsze. Nie były to żadne złośliwości, chociaż niektórzy, mniej bystrzy słuchacze, mogli je tak odbierać. Weźmy na przykład takie podsumowanie referatu wygłoszonego na seminarium: „Pan tu napisał wszystko co wiedział, ale to nie sztuka pisać, co się wie, sztuka wiedzieć, co pisać”. Bardzo wielu dzisiejszym autorom, dziennikarzom i politykom taka ocena i jednocześnie wskazówka by się przydała! Albo uwaga kiedy referat był niepotrzebnie zbyt długi: „Z tym tekstem to trzeba zrobić tak jak stary, doświadczony koń dorożkarski, kiedy do żłobu nasypią mu sieczki i owsa. Zanim zabierze się do jedzenia to najpierw w ten żłób dmuchnie, sieczka poleci, owies zostanie i można zacząć jeść”. Inna cenna rada to „zróbcie połowę tego co planujecie, ale zróbcie porządnie”. Profesor miał w szufladzie bardzo stare notesy z ocenami wszystkich swoich słuchaczy i czasem drugie pokolenie zdając egzamin mogło usłyszeć: „Pomyśl pan trochę jeszcze panie Wieniawski, pana ojciec dobrze mi odpowiadal na to pytanie”.

17
szczególnie wyższe uczelnie i gimnazjum ogólnokształcące jesienią 1939 roku zamknięto. Polakom wystarczyć miały szkoły podstawowe i zawodowe. Zakład Mikrobiologii i Przemysłu Rolnego SGGW, dopiero co przeniesiony do swych nowych pomieszczeń w oddanym już przed wojną pawilonie II przy ul. Rakowieckiej, nie zdążył jeszcze rozpakować swoich skrzyń, gdy już zagroziła im wywózka do Niemiec.

CZASY PRL-u

W tym mniej więcej okresie, w roku 1949, Departament Przemysłu Rolno-Spożywczego Ministerstwa Rolnictwa, kierowany przez bardzo światłego dyrektora, inż. Józefa Sigalina, zaczął pilnie odczuwać potrzebę posiadania wła-

W roku 1954 kiedy Ministerstwo Przemysłu podzielono na 6 ministerstw branżowych (Przemysłu Ciężkiego, Lekkiego, Chemicznego, Spożywczego itd.). Podziałowi uległ także GIPRiS. Powstały branżowe Instytuty Przemysłu Mięsnego, Mleczarskiego, Tłuszczowego, Cukrowniczego i w końcu nasz Instytut Przemysłu Fermentacyjnego (Uchwała Nr 534/54 Rady Ministrów z dnia 2 sierpnia 1954 r. w sprawie przekształcenia Głównego Instytutu Przemysłu Rolnego i Spożywczego w Instytut Przemysłu Fermentacyjnego).

Pod nazwą Instytut Przemysłu Fermentacyjnego firma przetrwała 34 lata. Nowe kierunki badań w naukach przyrodniczych wpłynęły na zmianę nazwy Instytutu. Zarządzeniem Nr 15 Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej z dnia 26 marca 1988 r. IPF otrzymał nazwę „Instytut Biotechnologii Przemysłu Rolno-Spożywczego” (IBPRS).
SIEDZIBY INSTYTUTU

Instytut Przemysłu Fermentacyjnego i Bakteriologii Rolnej znalazł pierwszą siedzibę w Muzeum Przemysłu i Rolnictwa przy Krakowskim Przedmieściu 66 (obecnie Centralna Biblioteka Rolnicza).

Muzeum Przemysłu i Rolnictwa powołano ustawą z dnia 5 czerwca 1875. Do 1881 roku mieściło się w dzierżawionym lokalu przy placu Krasińskich, po czym zostało przeniesione do poklasztornych (bernardyni) budynków, w których od 1796 roku mieścił się odwach czyli wojskowa komenda miasta. Obiekt ten znajdował się obok kościoła Św. Anny, przy Krakowskim Przedmieściu 66. Tam w listopadzie 1910 r. dr Wacław Dąbrowski utworzył Pracownię Przemysłu Fermentacyjnego i Bakteriologii Rolnej przekształconej w 1911 r. w Instytut o tej samej nazwie. Prowadzono tam kursy gorzelnicze od 1906 do 1939. Do 1925 r. kursy ukończyło 511 słuchaczy.

Po II wojnie światowej po gmachu Muzeum pozostały ruiny, a decyzją prezydium Rady Ministrów z 22 marca 1951 r., po 76 latach istnienia, Muzeum Przemysłu i Rolnictwa przestało istnieć. I tak po 43 latach wielce pożytecznej działalności w okowach caratu, 21 latach służby Niepodległej, po przetrwaniu dwóch wojen światowych, tylko 5 lat Muzeum wytrzymało w PRL. Tam tkwią korzenie Instytutu Biotechnologii Przemysłu Rolno-Spożywczego.

Po konsolidacji Instytutów i Centralnych Laboratoriów z Instytutem Biotechnologii Przemysłu Rolno-Spożywczego w latach 2003–2009 stan posiadan powierzchni budynków i działek zwiększył się wielokrotnie (Tabela 1).

Powierzchnia ogólna budynków i działek

Instytutu Biotechnologii Przemysłu Rolno-Spożywczego

(stan na 14.02.2012)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>IBPRS (Oddział, Pracownia)</th>
<th>Powierzchnia całkowita budynku w m²</th>
<th>Powierzchnia całkowita działki w ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IBPRS ul. Rakowiecka 36, 02-532 Warszawa</td>
<td>19 091</td>
<td>2,2327</td>
</tr>
<tr>
<td>2</td>
<td>Oddział Technologii Mięsa i Tłuszcz ul. Jubilerska 4, 04-190 Warszawa ul. Głogowska 239, 60-111 Poznań</td>
<td>3 948</td>
<td>0,6969</td>
</tr>
<tr>
<td>3</td>
<td>Oddział Chłodnictwa i Jakości Żywności ul. Piłsudskego 84, 92-202 Łódź</td>
<td>8 846</td>
<td>1,3846</td>
</tr>
<tr>
<td>4</td>
<td>Oddział Cukrownictwa ul. Inżynierska 4, 05-084 Leszno k/Błonia</td>
<td>682</td>
<td>5,5900</td>
</tr>
<tr>
<td>5</td>
<td>Oddział Koncentratów Spożywczych i Produktów Skrobiowych ul. Starołęcka 40, 36-361 Poznań</td>
<td>2 037</td>
<td>0,3470</td>
</tr>
<tr>
<td>6</td>
<td>Samodzielna Pracownia Gorzelnicza ul. Powstańców Wlkp. 17 85-090 Bydgoszcz</td>
<td>767</td>
<td>0,1318</td>
</tr>
<tr>
<td></td>
<td>Razem</td>
<td>35 371</td>
<td>10,3830</td>
</tr>
</tbody>
</table>
Instytut Przemysłu Fermentacyjnego tworzyły Działy wydzielane z GIPRiS-u:
- Dział Spirytusowo-Drożdżowy organizowany przez mgr inż. M. Lachertową i mgr. inż. A. Niwińskiego;
 W 1954 r. zlikwidowano Centralne Laboratoria (CL) przy Zjednoczeniach Przemysłu Spirytusowego, Piwowarskiego i Owocowo-Warzywnego. Wyposażenie i personel tych jednostek wzmocniły potencjał badawczy IPF.
 W roku 1954 ustalona została następująca struktura organizacyjna Instytutu. Podstawowymi komórkami stały się zakłady naukowe i działy w pionie administracyjno-gospodarczym.

Powstały następujące zakłady:
- Zakład Mikrobiologii z kier. dr. K. Matusiakiem,
- Zakład Technologii Drożdży,
- Zakład Technologii Spirytusu – oba pod kier. nauk. doc. P. Wojcieszaka,
- Zakład Technologii Piwa i Słodu z kier. mgr. inż. T. Gołębiewskim,
- Zakład Utylizacji Wód Ściekowych z kier. mgr inż. H. Karczewską,
STO LAT Instytutu

→ Zakład Informacji Naukowo-Technicznej i Ekonomicznej z kier. mgr. inż. M. Kolkhoffem,
→ Sekcja Planowania z kier. mgr. inż. S. Izdebskim.

KIEROWNICTWO Instytutu od początku istnienia (to jest najpierw w ramach GIPRiS) znajdowało się w rękach następujących osób:

w latach 1949–1954

→ dyrektor mgr inż. Aleksander Żelazny

→ z-ca ds. naukowo-badawczych mgr inż. Paweł Wojcieszak

→ z-ca ds. administracyjno-ekonomicznych Konrad Wieczorkiewicz
w latach 1954–1958

→ dyrektor Aleksander Reinheres

→ z-ca ds. naukowo-badawczych doc. mgr inż. Paweł Wojcieszak
→ z-ca ds. administracyjno-ekonomicznych p. Konrad Wieczorkiewicz

w latach 1958–1966

→ dyrektor mgr inż. Jakub Wermus

→ z-ca ds. naukowo-badawczych doc. mgr inż. Paweł Wojcieszak
 (do śmierci 03.01.1962 r.)
→ z-ca ds. administracyjno-ekonomicznych Konrad Wieczorkiewicz
w latach 1966–1981

→ dyrektor prof. dr hab. Tadeusz Gołębiewski

→ z-ca ds. naukowo-badawczych doc. dr inż. Jan Załęski (od 1964 do 1968 r.)
→ z-ca ds. administracyjno-ekonomicznych p. Konrad Wieczorkiewicz (do roku 1970)
→ mgr Edmund Mozdżyński (od 1970 do 1983 r.)
→ główny księgowy mgr Władysława Markiewicz (od r. 1974)

w latach 1981–1991

→ dyrektor prof. dr Wiesław Rządowski (do końca stycznia 1992 r.)

→ z-ca dyr. doc. dr Bogdan Łączyński (od 1983 do 1991 r.)
→ z-ca dyr. ds. technicznych i wdrożeniowych dr inż. Janusz Berdowski (od 1982 do 1990 r.)
→ z-ca dyr. ds. naukowo-badawczych doc. dr hab. Bogdan Sieliwanowicz (od 1988 r.)
→ główny księgowy mgr Władysława Markiewicz
od 1992 r. kierowali Instytutem

→ z-ca dyrektora ds. naukowych
 vacat (2006–2010)
 dr hab. Krystyna M. Stecka, prof. IBPRS (od 01.04.2010)

→ główni księgowi
 mgr Władysława Markiewicz (01.01.1974 – 30.06.1994)
 Zofia Oblękowska (15.06.1994 – 31.05.2001)
 mgr Genowefa W. Kołakowska (29.03.2003)

W skład pionu administracyjnego wchodziły Działy:
 Kadr, Finansowo-Księgowy, Administracyjno-Gospodarczy, Zaopatrzenia
 i Techniczny.

W sekretariacie zatrudnione były:
Janina Walicka 01.03.1957 – 31.07.1984
Teresa Osuch 01.01.1989 – 04.05.1997
Kazimiera Markowska 05.05.1997 – 09.09.2002
Krystyna Jarecka 10.09.2002 – 11.03.2008
inż. Iwona Mateńko 25.02.2008
W okresie minionych 60 lat organizacja służb pomocniczych zmieniała się. Zmieniły się też nazwy Działów.

W roku 1955, po wydzieleniu IPF z GIPRiS, zatrudnienie w działach naukowych wynosiło 116 osób. Reszta stanowiły 82 osoby w pionie administracyjno-gospodarczym, który świadczył usługi finansowo-księgowe, techniczne, zaopatrzeniowe, dozoru i porządku dla wszystkich instytutów resortu przemysłu spożywczego, zlokalizowanych w gmachu przy ul. Rakowieckiej 36.

W latach 1973–1976 przy ZPOW „Pektowin” w Jaśle utworzona została stacja doświadczalna produkcji preparatów enzymatycznych, co spowodowało w tym okresie zwiększenie zatrudnienia w Zakładzie Mikrobiologii Technicznej i Biochemii przeciętnie o 19 osób.

Zakład Analizy Instrumentalnej został utworzony w roku 1971 jako analizy czelne laboratorium środowiskowe wyposażone w kosztowną aparaturę importowaną.

Zakład w części stworzony został z etatów innych Instytutów.

Okresowo do IPF przyłączony został 26-osobowy oddział krakowski zlikwidowanego Instytutu Ekonomiki i Organizacji Przemysłu i z niego utworzono Zakład Ekonomiki i Organizacji Przemysłu Spożywczego.

Zakład Organizacji Badań utworzony został dopiero w roku 1971 z Samodzielnej Pracowni Ekonomiki, z Sekcji Planowania, Koordynacji i Rzeczników Patentowych. Cennym elementem składowym tej jednostki stała się Pracownia Efektywności Badań, której zadaniem było oszacowanie celowości ekonomicznej proponowanych tematów badawczych i dokumentowanie efektywności ekonomicznej prac zakończonych i wdrożonych.

W roku 1982 z Centralnego Laboratorium Przemysłu Rolnego wydzielono zespoły badawcze zajmujące się gorzelnictwem i wraz z pracownikami zlokalizowanymi w Bydgoszczy i Poznaniu przyłączono je do IPF.
Organizacja IPF

W roku 1991 nastąpiło połączenie Zakładu Informacji Naukowo-Technicznej i Ekonomicznej z Zakładem Organizacji Badań w jedną komórkę organizacyjną.

Placówki terenowe IPF zatrudniały w okresie szczytowym w latach 1972–1974 około 80 osób. Potem stopniowo były likwidowane aż do 11 osób w 1980 r. (w tym przede wszystkim obsada Browaru w Biskupcu). Zmiany te były spowodowane dążeniem do uzyskania funduszu płac na podwyższenie wynagrodzeń pracownikom IPF.

Pierwsze lata istnienia Instytutu Przemysłu Fermentacyjnego to intensywne prace nad skompletowaniem obsady naukowej i technicznej, organizowanie warsztatu badawczego i doskonalenie organizacji Instytutu, jako placówki naukowej.

AKTUALNA ORGANIZACJA INSTYTUTU (IBPRS)

Działalność naukowo-badawcza, techniczna i informacyjna prowadzona jest przez następujące jednostki organizacyjne:
→ Zakład Technologii Fermentacji (ZF) – Kierownik dr hab. Krystyna M. Stecka, prof. IBPRS
→ Zakład Mikrobiologii (ZM) – Kierownik dr Anna Misiewicz
→ Zakład Technologii Przetworów Owocowych i Warzywnych (ZO) – Kierownik dr Sylwia Skąpska
→ Zakład Technologii Piwa, Słodu i Żywności Prozdrowotnej (ZP) – Kierownik dr Elżbieta Baca
→ Zakład Analizy Żywności (ZAŻ) – Kierownik dr hab. Renata Jędrzejczak, prof. IBPRS
→ Zakład Przetwórstwa Zbóż i Piekarstwa – Kierownik mgr inż. Wojciech Górniak
→ Zakład Informacji Naukowo-Technicznej (ZINT) – Kierownik mgr Renata Siwek.

Zakłady naukowo-badawcze wspierane są w swej działalności przez jednostki pomocnicze:
→ Dział Finansowo-Księgowy (DF) – mgr Genowefa W. Kołakowska
→ Dział Planowania i Koordynacji Badań (DP) – Kierownik mgr inż. Anna Bednarek
→ Dział Spraw Pracowniczych (DSP) – Kierownik Katarzyna Olędzka
→ Dział Administracji (DA) – Kierownik Danuta Stanios
→ Dział Techniczny (DT) – Kierownik inż. Adam Korczak
→ Stanowisko ds. Systemu Jakości (KJ) – Kierownik mgr inż. Anna Nurek
→ Stanowisko ds. BHP – inż. Bogdan Jastrzębski
W strukturach IBPRS działają jednostki terenowe:

→ Samodzielna Pracownia Gorzelnicza (PG) od 1992 r. – Kierownik mgr inż. Katarzyna Koterska
→ Oddział Koncentratów Spożywczych i Produktów Skrobiowych (OK) od 1.01.2008 r. – dyrektor dr inż. Marian Remiszewski, prof. IBPRS
→ Oddział Chłodnictwa i Jakości Żywności (OCh) od 01.01.2008 r. – dyrektor dr inż. Elżbieta Polak
→ Oddział Technologii Mięsa i Tłuszczu (OTMiT) od 01.07.2009 r. – dyrektor dr hab. Andrzej Borys, prof. IBPRS
→ Oddział Cukrownictwa (OC) od 01.07.2009 r. – dyrektor dr inż. Andrzej Baryga.

Funkcjonujące w IBPRS Oddziały i Zakłady badawcze obejmują wszystkie branże przemysłu spożywczego, poza mleczarstwem. Po likwidacji Instytutu Mleczarstwa (15.12.2006) w resorcie Ministerstwa Rolnictwa i Rozwoju Wsi nie ma ośrodka badawczego zajmującego się problematyką mleczarską. Przewiduje się rozpoczęcie organizowania w IBPRS komórki badawczej odnoszącej się do spraw produkcji i jakości mleka oraz jego przetworów.

Ze względu na ograniczenia finansowe, w ostatnich dwudziestu latach likwidacji uległa przychodnia lekarska (30.06.1999) i Sekcja Normalizacji Branżowej (21.04.2006).

Kierownictwo działów pomocniczych IPF i IBPRS

Kierownicy Zakładu Informacji Naukowo-Technicznej

1966–1971 mgr Danuta Kosiczenko – Kierownik Branszowego Ośrodka Dokumentacji Naukowej, Technicznej i Ekonomicznej

Kierownicy Działu Planowania i Koordynacji Badań

Zakład Organizacji Badań
mgr inż. Irena Tabiszewska – Kierownik: 1.11.1974–24.05.0991

Zakład Organizacji Badań i Informacji Naukowo-Technicznej

Dział Planowania i Koordynacji Badań

Kierownicy Działu Spraw Pracowniczych

mgr Jan Nykiel – 1.10.1981–18.08.1984
mgr Andrzej Cichocki – 30.11.1984–18.05.1990
Katarzyna Olędzka – 1.08.1990

Kierownicy Działu Technicznego

inż. Adam Korczak – 1996 r. – Kierownik DT
Aktualna organizacja Instytutu (IBPRS)

Kierownicy Działu Administracyjnego

Czesław Filipiak – 1957–1977
Teresa Czupryńska – 1995–2002
Danuta Stanios – 2002 r.

Stanowisko ds. Systemu Jakości (KJ) 2001 r.
Kierownik mgr inż. Anna Nurek

Stanowisko ds. BHP 2009 r.
inż. Bogdan Jastrzębski

Pełnomocnik ds. Ochrony Informacji Niejawnych (OIN) 2006 r.
mgr Ludwik Najdychor

Specjalista ds. marketingu 2011 r.
mgr Kinga Wesołowska
ZATRUDNIENIE

Zatrudnienie w Instytucie wahało się w szerokich granicach.

Tabela 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ogółem</td>
<td>198</td>
<td>311</td>
<td>381</td>
<td>349</td>
<td>286</td>
<td>282</td>
<td>240</td>
<td>251</td>
</tr>
<tr>
<td>w zakładach naukowych</td>
<td>89</td>
<td>167</td>
<td>216</td>
<td>201</td>
<td>158</td>
<td>173</td>
<td>138</td>
<td>152</td>
</tr>
<tr>
<td>w komórkach terenowych</td>
<td>–</td>
<td>55</td>
<td>77</td>
<td>56</td>
<td>11</td>
<td>24</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>

Najwięcej pracowników Instytut liczył w 1974 r. – 381 osób (Tabela 2). W następnych latach zatrudnienie malało na skutek likwidacji oddziałów terenowych, zmiany polityki gospodarczej i zmniejszenia nakładów na naukę z budżetu państwa.

Na zmniejszenie zatrudnienia, głównie w grupie pracowników inżynieryjno-technicznych, w dużym stopniu, wpłynęła likwidacja stacji doświadczalnych w terenie jak np. stacji ZPOW „Pektowin” w Jaśle prowadzącej badania w zakresie produkcji enzymów, pracowni Doświadczeń Politechnicznych w Browarze OZPS w Biskupcu lub stacji produkującej preparaty do zakiszania pasz w Tyczynie k/Rzeszowa (lata 90 XX w.). Placówki terenowe zatrudniały w szczytowym okresie około 80 osób.

W okresie transformacji w latach 90. ubiegłego wieku i w pierwszym dziesięcioleciu XXI w. również następowały zmiany w zatrudnieniu (Tabela 3).

W latach 1991–2002 liczba zatrudnionych zmniejszyła się z 251 do 147 osób w wyniku tzw. restrukturyzacji czyli konieczności ograniczenia wydatków.

Wzrósł w tym czasie udział pracowników z tytułem lub stopniem naukowym z 12% do 20%.

Po połączeniu z Centralnymi Laboratoriami w Poznaniu (koncentraty) i w Warszawie (zboże i piekarstwo) w 2003 r. zatrudnienie ogółem w IBPRS wzrosło do 190 osób (o 29%).
Zatrudnienie

Zmiany zatrudnienia w IBPRS w latach 1991–2011

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rok</th>
<th>Zatrudnienie ogółem</th>
<th>w tym pracownicy naukowi z tytułem naukowym</th>
<th>ze stopniem naukowym dr. i dr. hab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1991</td>
<td>251</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>1992</td>
<td>228</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>1993</td>
<td>200</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>1994</td>
<td>210</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>1995</td>
<td>212</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>1996</td>
<td>209</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>1997</td>
<td>206</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>1998</td>
<td>196</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>1999</td>
<td>169</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>2000</td>
<td>169</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>2001</td>
<td>168</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>2002</td>
<td>147</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>13</td>
<td>2003 1)</td>
<td>190</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>2004</td>
<td>196</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>2005</td>
<td>174</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>2006</td>
<td>171</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>2007</td>
<td>183</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>2008 2)</td>
<td>228</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>2009 3)</td>
<td>303</td>
<td>5</td>
<td>51</td>
</tr>
<tr>
<td>20</td>
<td>2010</td>
<td>294</td>
<td>5</td>
<td>47</td>
</tr>
<tr>
<td>21</td>
<td>2011</td>
<td>283</td>
<td>5</td>
<td>47</td>
</tr>
</tbody>
</table>

1) 2003 r. – Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dn. 11.12.2002 r. w sprawie połączenia z dniem 1.01.2003 r. Instytutu Biotechnologii Przemysłu Rolno-Spożywczego z Centralnym Laboratorium Przemysłu Koncentratów Spozywczych, Centralnym Laboratorium Technologii Przetwórstwa i Przechowywania Zboża oraz Zakładem Badawczym Przemysłu Piekarskiego.

2) 2008 r. – Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dn. 19.12.2007 r. w sprawie połączenia z dniem 1.01.2008 r. Centralnego Laboratorium Chłodnictwa, Centralnego Laboratorium Przemysłu Ziemniaczanego, Centralnego Ośrodka Badawczo-Rozwojowego Przemysłu Gastro­nomicznego oraz Zakładem Biotechnologii Przemysłu Rolno-Spożywczego.

3) 2009 r. – Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dn. 15.06.2009 r. w sprawie połączenia z dniem 1.07.2009 r. Instytutu Przemysłu Mięsnego i Tłuszczowego, Instytutu Przemysłu Cukrowniczego oraz Zakładem Biotechnologii Przemysłu Rolno-Spożywczego.
Liczba pracowników naukowych ze stopniem doktora wzrosła o 5 osób (do 32), ale ich udział w ogólnym zatrudnieniu zmniejszył się z 20% przed połączeniem (2002 r.) do 18% po połączeniu (2003 r.). Po kolejnym połączeniu w 2008 r. z Centralnymi Laboratoriami w Poznaniu (przemysł ziemniczy) i Łodzi (chłodnictwo i gastronomia) liczba zatrudnionych wzrosła o 45 osób do 228 (o 29%), przy czym udział pracowników naukowych z tytułem i stopniem naukowym zmniejszył się do 14%. Kolejne połączenie w 2009 r. z Instytutami w Warszawie (mięsny i tłuszczowy) i w Lesznie (cukrowniczy) skutkowało zwiększeniem zatrudnienia ogółem o 75 osób (32%) i wzrostem udziału osób z tytułem lub stopniami naukowymi do 18% ogółu zatrudnionych. W wyniku dalszej racjonalizacji zatrudnienia, w roku 2011, w IBPRS zatrudnionych było 233 osoby w tym 5 osób z tytułem naukowym profesora i 47 osób ze stopniami naukowymi co stanowiło 18% ogółu zatrudnionych.

Powyższe liczby wskazują, że połączenia Instytutów ani nie wpłynęły na zwiększenie procentowego udziału pracowników z tytułem i stopniami naukowymi, ani na zmniejszenie udziału osób w działach pomocniczych. Wynika to m.in. stąd, że włączone jednostki funkcjonują w samodzielnych obiektach, odległych od Centrali i muszą zachować służby niezbędne do prawidłowej działalności.
ROZWÓJ KADRY

Pierwsze lata istnienia Instytutu Przemysłu Fermentacyjnego to intensywne prace nad skompletowaniem obsady naukowej i technicznej, organizowanie warsztatu badawczego i doskonalenie organizacji Instytutu, jako placówki naukowej.

Do czasu mianowania profesorami pracowników Instytutu Przemysłu Fermentacyjnego, tj. do roku 1976 w Instytucie pracowali następujący profesorowie:

– prof. dr Franciszek Nowotny (1950–1957),
– prof. dr hab. Kazimierz Bogdański (1960–1965),

oraz samodzielni pracownicy naukowi, którzy uzyskali nominację profesorską po zakończeniu pracy w Instytucie mianowicie:

– prof. dr Kazimierz Matusiak,
– prof. dr hab. Jan Załęski,

W tym czasie w Instytucie tytuł profesora uzyskali:

– prof. dr hab. Krystyna Karwowska (nadzw. 1980),
– prof. dr hab. Sтанisław Łąbodziński (kontr. 1987),
– prof. dr Wiesław Rzękowski (nadzw. 1988),
– prof. dr hab. Kazimierz Jarosz (nadzw. 1988),
STO LAT Instytutu

- prof. dr hab. Olga Ilnicka-Olejniczak (nadzw. 1988),

W okresie tym, głównym zadaniem kierownictwa Instytutu było umacnianie zespołów naukowych w pierwszym rzędzie przez zweryfikowanie i sklasyfikowanie pracowników badawczych przez Komisję Kwalifikacyjną Rady Naukowej. Postanowiono też skoncentrować zespoły naukowe w nowej siedzibie. Ustalono programy podnoszenia kwalifikacji kadr przez uzyskanie stopni naukowych w drodze studiów aspiranckich lub podyplomowych. Działań te doprowadziły wkrótce do uzyskania stopni doktora na Politechnice Łódzkiej, SGGW, WSR we Wrocławiu, UMCS w Lublinie, WSR w Poznaniu. Pierwszych doktorów w IPF zamieszczono w Tabeli 4. W grupie pracowników naukowych Instytutu 30 do 40 osób posiadało stopień doktora, a 8 do 10 – stopień doktora habilitowanego lub kwalifikacje docenta (okresowo nazywanego samodzielnym pracownikiem naukowo-badawczym).

Instytut Przemysłu Fermentacyjnego w roku 1972 na mocy Uchwały RM (MP 13 XII 1972 r.) uzyskał uprawnienia do nadawania stopnia doktora nauk technicznych.

W dniu 20 grudnia 1973 r. Rada Naukowa IPF dokonała otwarcia trzech przewodów doktorskich. Do lipca 1987. Rada Naukowa nadała stopień doktora następującym dwunastu pracownikom IPF oraz jednemu pracownikowi Akademii Rolniczej w Lubliniea) i pracownikowi Instytutu Ochrony Środowiska z Warszawyb) (w nawiasie podana jest data obrony rozprawy doktorskiej i nazwisko promotora):

2. Zofia Chorążka (29.06.1977 – prof. K. Karwowska),
3. Andrzej Bernat (21.06.1978 – prof. W. Rzędowski),
5. Lucja Dubiel (28.11.1978 – prof. T. Golebiewski),
7. a) Jan Piotrowski (25.03.1982 – prof. M. Milczak),
8. Krystyna Stecka (12.06.1984 – prof. S. Łabendziński),
10. Ewa Kostrzewa (11.06.1986 – prof. K. Karwowska),
12. Danuta Czajkowska (22.01.1987 – prof. O. Ilnicka-Olejniczak),
13. b) Krystyna Kosińska (23.06.1987 – prof. O. Ilnicka-Olejniczak),
Rozwój kadry

W 2012 w IBPRS pracuje 168 osób z wykształceniem wyższym uzyskanym przed rozpoczęciem pracy w Instytucie lub podczas zatrudnienia (Tabela 8). Najliczniejszą grupę (≈38%) stanowią osoby z dyplomem magistra. Drugą co do liczebności grupę stanowią doktorzy (ponad 13,5%). Zbyt mało liczna jest grupa samodzielnych pracowników naukowych tzn. profesorów tytułarnych (ok. 1,8%) oraz doktorów habilitowanych (2,5%).
<table>
<thead>
<tr>
<th>Lp.</th>
<th>Imię i nazwisko</th>
<th>Stopień/tytuł naukowy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>doktor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>doktor habilitowany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>profesor</td>
</tr>
<tr>
<td>1.</td>
<td>Władysław Dylkowski</td>
<td>1964 r. – Politechnika Łódzka</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Tadeusz Gołębiewski</td>
<td>1965 r. – Szkoła Główna Gospodarstwa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiejskiego w Warszawie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promotor – doc. mgr R. Majchrzak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Lidia Kosewska</td>
<td>1964 r. – Politechnika Łódzka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promotor – prof. J. Jakubowska</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Roman Kwaśniewski</td>
<td>1966 r. – Wyższa Szkoła Rolnicza</td>
</tr>
<tr>
<td></td>
<td></td>
<td>we Wrocławiu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promotor – dr K. Gerlicz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Halina Rzędowska</td>
<td>1965 r. – Uniwersytet im. M. Curie-Skło-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dowskiej w Lublinie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Wiesław Rzędowski</td>
<td>1967 r. – Szkoła Główna Gospodarstwa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiejskiego w Warszawie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Eugeniusz Rembowski</td>
<td>1968 r. – Wyższa Szkoła Rolnicza</td>
</tr>
<tr>
<td></td>
<td></td>
<td>we Wrocławiu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promotor – dr K. Gerlicz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Maria Dąbrowska</td>
<td>1986 r. – Szkoła Główna Gospodarstwa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiejskiego w Warszawie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promotor – prof. dr Z. Muszyński</td>
</tr>
<tr>
<td>L. p</td>
<td>Imię i nazwisko</td>
<td>Uzyskany tytuł/stopień naukowy</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>1.</td>
<td>Roman A. Grzybowski</td>
<td>profesor</td>
</tr>
<tr>
<td>2.</td>
<td>Barbara Szteke</td>
<td>ZAŻ profesor</td>
</tr>
<tr>
<td>3.</td>
<td>Bogusław Czupryński</td>
<td>PG profesor</td>
</tr>
<tr>
<td>4.</td>
<td>Barbara Szteke</td>
<td>ZAŻ doktor habilitowany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Danuta Czajkowska</td>
<td>ZM doktor habilitowany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Ludwik Czerwiecki</td>
<td>ZAŻ doktor habilitowany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Maria Trzcinka</td>
<td>ZM doktor habilitowany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Renata Jędrzejczak</td>
<td>ZAŻ doktor habilitowany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. p</td>
<td>Imię i nazwisko</td>
<td>Uzyskany tytuł/stopień naukowy</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>9.</td>
<td>Karol Mińkowski</td>
<td>OMiT doktor habilitowany</td>
</tr>
<tr>
<td>10.</td>
<td>Krystyna M. Stecka</td>
<td>ZF doktor habilitowany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Anna Misiewicz</td>
<td>ZM doktor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>Imię i Nazwisko</td>
<td>Zawód</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>20.</td>
<td>Antoni Miecznikowski</td>
<td>ZF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Barbara Sokołowska</td>
<td>ZO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Elżbieta Wojtowicz</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Anna Fabisiak</td>
<td>ZO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Joanna Królasik</td>
<td>OCh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Magdalena Wróbel-Żydrezewska</td>
<td>OCh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Piotr Janiszewski</td>
<td>OMiT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Marek Roszko</td>
<td>ZAŻ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Awanse naukowe w IBPRS w latach 1992–2011

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>profesor</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>dr habilitowany</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>doktor</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Wykaz pracowników IBPRS podnoszących kwalifikacje (1998–2011)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Imię i nazwisko</th>
<th>Zakład/Oddział</th>
<th>Uzyskany stopień zawodowy</th>
<th>Rok</th>
<th>Uczelnia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urszula Wetoszka</td>
<td>ZM inż.</td>
<td>mgr</td>
<td>1998</td>
<td>2000 SGGW</td>
</tr>
<tr>
<td>2</td>
<td>Alina Suterska</td>
<td>ZF inż.</td>
<td>mgr</td>
<td>2000</td>
<td>2002 SGGW</td>
</tr>
<tr>
<td>3</td>
<td>Elżbieta Bartosiak</td>
<td>ZF inż.</td>
<td>mgr</td>
<td>2002</td>
<td>2004 Wyższa Szkoła Ekonomiczno-Humanistyczna w Skierniewicach SGGW</td>
</tr>
<tr>
<td>4</td>
<td>Iwona Szuba</td>
<td>DP inż.</td>
<td>mgr</td>
<td>2002</td>
<td>2012 SGGW</td>
</tr>
<tr>
<td>5</td>
<td>Danuta Kotyrba</td>
<td>ZF mgr</td>
<td></td>
<td>2002</td>
<td>Uniwersytet Łódzki</td>
</tr>
<tr>
<td>6</td>
<td>Anna Szchecowska</td>
<td>ZAŻ mgr</td>
<td></td>
<td>2002</td>
<td>Wyższa Szkoła Ekonomiczna w Warszawie</td>
</tr>
<tr>
<td>7</td>
<td>Marcin Sokołowski</td>
<td>ZF inż.</td>
<td></td>
<td>2003</td>
<td>Politechnika Warszawska</td>
</tr>
<tr>
<td>8</td>
<td>Krystian Marszałek</td>
<td>ZO mgr inż.</td>
<td></td>
<td>2008</td>
<td>SGGW</td>
</tr>
</tbody>
</table>
9. Anna Kicler | DP | mgr | 2008 | Uniwersytet Kardynała Stefana Wyszyńskiego
11. Michał Świątek | ZF | mgr inż. II fakultet | 2011 | SGGW
12. Krzysztof Powałowski | OM | mgr inż. | 2011 | Uniwersytet Przyrodniczy w Poznaniu

Tabela 8

Pracownicy naukowo-badawcze IBPRS w 2012 r.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Zakład/Oddział</th>
<th>prof.</th>
<th>dr hab.</th>
<th>dr</th>
<th>mgr</th>
<th>inż.</th>
<th>Razem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dyrekcja</td>
<td>1</td>
<td>1.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>ZF</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>ZM</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>ZAŻ</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>ZP</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>ZO</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>ZZ</td>
<td></td>
<td>10</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>PG</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>OK</td>
<td>1</td>
<td>9</td>
<td>13</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>OCh</td>
<td>7</td>
<td>23</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>OM</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>OC</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ogółem</td>
<td>5</td>
<td>7</td>
<td>38</td>
<td>106</td>
<td>12</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Udział w ogólnej liczbie (%)</td>
<td>1,79</td>
<td>2,51</td>
<td>13,62</td>
<td>37,99</td>
<td>4,30</td>
<td></td>
</tr>
</tbody>
</table>
Prof. dr hab. Eugeniusz Pijanowski
(1906–1974)
RADA NAUKOWA

Rada Naukowa Instytutu powoływana była przez Ministra Przemysłu Spożywczego i Skupu, a od 1984 r. przez Ministra Rolnictwa i Gospodarki Żywnościowej.

Rada Naukowa składała się z 25–30 członków: profesorów i docentów Instytutu, a także Szkoły Głównej Gospodarstwa Wiejskiego, Politechniki Łódzkiej, Akademii Rolniczych w Lublinie, Poznaniu i Wrocławiu oraz Akademii Ekonomicznej we Wrocławiu, a ostatnio z Akademii Rolniczo-Technicznej w Olsztynie.

Do składu Rady powołani byli także dyrektorzy techniczni zjednoczeń przemysłów fermentacyjnych i przemysłu owocowo-warzywnego oraz dyrektorzy (zwykle z-cy ds. technicznych) zakładów produkcyjnych, z którymi najbliżej współpracował Instytut.

Do roku 1981 podstawowymi organami wykonawczymi Rady Naukowej były branżowe zespoły konsultacyjne. Minister powołał oddzielnie zespoły konsultacyjne dla każdej gałęzi przemysłu oraz zespół międzybranżowy dla
spraw ekonomiki i organizacji przemysłu spożywczego, które działały pod przewodnictwem dyrektora IPF i – z zasady – przy współudziale naczelnych inżynierów zjednoczeń przemysłów i głównych inżynierów, wyróżniających się w zakresie programowania postępu naukowo-technicznego zakładów produkcyjnych danych branż. Branżowe zespoły konsultacyjne były bardzo skuteczną i cenną dla Instytutu i przemysłów platformą porozumienia, dzięki której można było wspólnie usprawniać programy rozwoju techniki w całych gałęziach przemysłu i wybranych zakładach produkcyjnych. Przemysł, dzięki tym zespołom, mógł uczestniczyć w tworzeniu planów badań zakładów naukowych Instytutu, opiniować sprawozdania z wykonanych badań oraz okresowe raporty z działalności Instytutu.

W okresie, gdy kierownictwa gałęzi przemysłu blisko współpracowało z Instytutem na forum zespołów konsultacyjnych, więź nauki z praktyką gospodarczą była bardzo ścisła. Branżowe Zespoły Konsultacyjne odbywały swoje posiedzenia od 5 do 10 razy w ciągu roku.

W latach 1965–2012 w skład Rady Naukowej spoza Instytutu wchodziło kilkadziesiąt osób z różnych środowisk akademickich, zakładów przemysłu spożywczego, departamentów resortu rolnictwa, redakcji czasopism branżowych (Tabela 10).

→ 16 pracowników IBPRS – w tej liczbie 6 osób z tytułem naukowym lub stopniem naukowym doktora habilitowanego i 10 osób bez tytułu naukowego i stopnia doktora habilitowanego;
→ 8 osób spoza Instytutu.
<table>
<thead>
<tr>
<th>Rok</th>
<th>Przewodniczący</th>
<th>Zastępcy przewodniczącego</th>
<th>Sekretarz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966–1969</td>
<td>prof. dr Stanisław Masior</td>
<td>prof. dr J. Jakubowska prof. dr R. Majchrzak</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>prof. dr Stanisław Masior</td>
<td>prof. dr R. Majchrzak prof. dr J. Jakubowska</td>
<td>mgr inż. Irena Tabiszewska</td>
</tr>
<tr>
<td>1974</td>
<td>prof. dr Stanisław Masior</td>
<td>prof. dr R. Majchrzak prof. dr J. Jakubowska</td>
<td>mgr inż. Irena Tabiszewska</td>
</tr>
<tr>
<td>1977</td>
<td>prof. dr Stanisław Masior</td>
<td>prof. dr J. Jakubowska prof. dr R. Majchrzak</td>
<td>dr inż. Jadwiga Rosa</td>
</tr>
<tr>
<td>1983</td>
<td>prof. dr Stanisław. Masior</td>
<td>prof. dr hab. Stanisław Bujak doc dr inż. Władysław Dylkowski</td>
<td></td>
</tr>
<tr>
<td>I kadencja</td>
<td>prof. dr hab. Jerzy Czuba</td>
<td>prof. dr hab. dr h.c. Adolf Horubała</td>
<td>prof. dr hab. Włodzimierz Bednarski</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>1991–1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999–2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV kadencja</td>
<td>prof. dr. hab. Włodzimierz Bednarski</td>
<td>doc. dr. hab. Renata Jędrzejczak</td>
<td>doc. dr hab. Marian Remiszewski</td>
</tr>
<tr>
<td>2007–2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008–2012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Członkowie Rady Naukowej spoza IBPRS

<table>
<thead>
<tr>
<th>Rok/lata</th>
<th>Członkowie RN</th>
<th>Instytucja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966–1986</td>
<td>prof. dr Stanisław Masior</td>
<td>Politechnika Łódzka</td>
</tr>
<tr>
<td></td>
<td>prof. dr Jadwiga Jakubowska</td>
<td>Politechnika Łódzka</td>
</tr>
<tr>
<td>1965–1978</td>
<td>prof. droman Majchrzak</td>
<td>AR Warszawa</td>
</tr>
<tr>
<td></td>
<td>mgr inż. K. Jarosz</td>
<td>ZPS</td>
</tr>
<tr>
<td>1965</td>
<td>mgr W. Ferchmin</td>
<td>Poznańskie ZPS</td>
</tr>
<tr>
<td>1965</td>
<td>mgr inż. T. Spychalski</td>
<td>Kujawskie Z.P.O.W.</td>
</tr>
<tr>
<td>1972</td>
<td>doc. dr hab. Koniński</td>
<td>MPiS</td>
</tr>
<tr>
<td>1972</td>
<td>prof. dr hab. Jerzy Kaczkowski</td>
<td>AR Warszawa</td>
</tr>
<tr>
<td>Rok/lata</td>
<td>Członkowie RN</td>
<td>ÚW</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Year</td>
<td>Position</td>
<td>Institution/Role</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1986–1987</td>
<td>dr inż. Franciszek Bosak</td>
<td>ZPOW Jasło</td>
</tr>
<tr>
<td>1986</td>
<td>prof. dr hab. Czesław Kierabiński</td>
<td>Wojskowy Ośrodek Służby Zwn.embertów</td>
</tr>
<tr>
<td>1986</td>
<td>mgr. dr Adam Podsiadły</td>
<td>ZPOW Dwikozy</td>
</tr>
<tr>
<td>1986</td>
<td>mgr inż. Ryszard Przychodzki</td>
<td>Zrzesz. PP W-wa</td>
</tr>
<tr>
<td>1986, 1987</td>
<td>doc. dr Włodzimierz Słowiński</td>
<td>CLPKS Poznń</td>
</tr>
<tr>
<td>1987</td>
<td>mgr inż. Stanisław Bar</td>
<td>ZPOW Łowicz</td>
</tr>
<tr>
<td>1987</td>
<td>prof. dr hab Nina Baryłko-Pikielna</td>
<td>IŻŻ Warszawa</td>
</tr>
<tr>
<td>1987</td>
<td>mgr inż. Stefan Łysakowski</td>
<td>Z-dy Piwowarskie, W-wa</td>
</tr>
<tr>
<td>1987</td>
<td>prof. dr hab. Leon Sedlaczek</td>
<td>Uniwersytet Łódzki</td>
</tr>
<tr>
<td>1999–2003</td>
<td>prof. dr hab. Andrzej Jarczyk</td>
<td>SGGW</td>
</tr>
<tr>
<td>Rok/lata</td>
<td>Członkowie RN</td>
<td>Uniwersytet Warmińsko Mazurski w Olsztynie</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>2003–2007</td>
<td>prof. dr hab. Łucja Fornal</td>
<td>Uniwersytet Warmińsko Mazurski w Olsztynie</td>
</tr>
<tr>
<td>2007–2012</td>
<td>Prof. dr hab. Zdzisław Targoński</td>
<td>AR w Lublinie</td>
</tr>
<tr>
<td>2003–2007</td>
<td>prof. dr hab. Wiktor Obuchowski</td>
<td>AR w Poznaniu</td>
</tr>
<tr>
<td>2003–2007</td>
<td>prof. dr hab. Erwin Wąsowicz</td>
<td>AR w Poznaniu</td>
</tr>
</tbody>
</table>
BADANIA REALIZOWANE W IBPRS

W ramach działalności statutowej w Instytucie prowadzonych jest ok. 70 prac badawczych rocznie. Prace te są dofinansowywane przez budżet Państwa. Ponadto realizowane są projekty badawcze, projekty celowe, projekty dofinansowywane z Funduszy Europejskich i projekty realizowane w ramach Programów Ramowych Unii Europejskiej (Tabela 11). Dane dotyczące jednostek włączonych w 2003, 2008 i 2009 r. obejmują okres po włączeniu.

Dużą liczbą projektów badawczych własnych wyróżnia się Zakład Mikrobiologii i Zakład Technologii Fermentacji (po 18 projektów) na 62 projekty własne ogółem w Instytucie. W grupie projektów celowych wyróżnia się Zakład Technologii Fermentacji. Zrealizował 17 projektów (43%) na 39 realizowanych w Instytucie.

Mało było projektów promotorskich, zamawianych i rozwojowych. Niepokojące jest zjawisko braku realizacji lub niewielkiej liczby w niektórych jednostkach Instytutu.

Projekty realizowane przez IBPRS w latach 1991–2012

<table>
<thead>
<tr>
<th>Tabela 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Projekty badawcze: 76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZAŻ</th>
<th>ZM</th>
<th>ZP</th>
<th>ZO</th>
<th>ZF</th>
<th>ZZ</th>
<th>PG</th>
<th>OK</th>
<th>OCh</th>
<th>OMiT</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Projekty badawcze własne: 62
w tym 3 złożone przez inne jednostki, a IBPRS był współwykonawcą badań

<table>
<thead>
<tr>
<th>4</th>
<th>18</th>
<th>5</th>
<th>8</th>
<th>19</th>
<th>–</th>
<th>3</th>
<th>2</th>
<th>–</th>
<th>4</th>
<th>–</th>
</tr>
</thead>
</table>

Projekty badawcze promotorskie: 9
w tym 2 złożone przez inne jednostki–prace doktorskie realizowali pracownicy IBPRS

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>–</th>
<th>–</th>
<th>1</th>
<th>–</th>
<th>1</th>
<th>1</th>
<th>–</th>
<th>–</th>
</tr>
</thead>
</table>

Projekty badawcze zamawiane: 2
(ZO i OK ten sam projekt, 2 różne Zadania)

Koordynatorem projektów była AR w Szczecinie i AR w Poznaniu

<table>
<thead>
<tr>
<th>–</th>
<th>1</th>
<th>–</th>
<th>1</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>1</th>
<th>–</th>
<th>–</th>
</tr>
</thead>
</table>

Projekty badawcze rozwojowe: 3

| – | – | – | – | – | – | – | 1 | 1 | 1 | – |
2. Projekty celowe: 39 (Wnioskodawcą 4 projektów był IBPRS)

<table>
<thead>
<tr>
<th>ZAŻ</th>
<th>ZM</th>
<th>ZP</th>
<th>ZO</th>
<th>ZF</th>
<th>ZZ</th>
<th>PG</th>
<th>OK</th>
<th>OCh</th>
<th>OMiT</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>17*</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* W tym 1 projekt został przerwany z powodu likwidacji firmy.

3. Projekty dofinansowane z Funduszy Europejskich: 13

w tym:
– 2 projekty realizowane w ramach konsorcjum naukowego a IBPRS jest członkiem konsorcjum (OMiT: 1, OCh: 1);
– w 1 projekcie IBPRS jest podwykonawcą badań (OK)

<table>
<thead>
<tr>
<th>ZAŻ</th>
<th>ZM</th>
<th>ZP</th>
<th>ZO</th>
<th>ZF</th>
<th>ZZ</th>
<th>PG</th>
<th>OK</th>
<th>OCh</th>
<th>OMiT</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>

4. Projekty realizowane w ramach Programów Ramowych Unii Europejskiej: 2

ZM: 1 EBRCN w ramach V Programu Ramowego Unii Europejskiej
ZO: 1 FERBEV w ramach VI Programu Ramowego Unii Europejskiej

Informacje z:
– OK od 2003 r., ZS OK od 2008 r.
– OCh od 2008 r.
– OMiT i OC od 2009 r.
Badania realizowane w IBPRS

Działalność upowszechnieniowa,
szkoleniowa i dydaktyczna

W Instytucie (IPF i IBPRS) organizowano sympozja, seminaria i inne formy działalności samodzielnie lub z innymi jednostkami.

Konferencje, kursy, seminaria i inne organizowane przez IBPRS.

W latach 1961–2011 co najmniej:

→ konferencje: 45
→ kursokonferencje: 17
→ seminaria i sympozja: 114
→ kursy: 37
→ sesje: 7
→ posiedzenia: 6
→ szkolenia: 211
→ warsztaty: 5
→ spotkania: 1
→ szkoła letnia: 1

Konferencje, kursy, seminaria i inne organizowane przez IBPRS wspólnie z innymi jednostkami:

→ konferencje: 14
→ kursokonferencje: 6
→ seminaria: 25
→ sympozja: 11
→ kongres: 1
→ sesje: 6
→ zjazdy: 2
→ szkolenia: 41

Na konferencjach i innych spotkaniach organizowanych w Instytucie brali udział pracownicy wyższych uczelni krajowych i zagranicznych, pracownicy jednostek kontrolnych i placówek naukowych, pracownicy różnych branż przemysłu spożywczego, w tym: gorzelniczego, piwowarskiego, młynarskiego, piekarskiego, owocowo-warzywnego, mięsnego, tłuszczowego, koncentratów spożywczych i cukrowniczego. Na szczególne podkreślenie zasługują konferencje organizowane przez Zakład Analizy Żywności.

W Instytucie prowadzone są prace dyplomowe przez studentów uczelni takich jak SGGW, Politechnika Warszawska, Uniwersytet Kazimierza Wielkiego w Bydgoszczy. W latach 1997–2011 pracownicy IBPRS byli promotorami
171 prac magisterskich, 16 prac doktorskich oraz opiekunami naukowymi
19 prac magisterskich i inżynierskich. Pracownicy Instytutu prowadzili wykła-
dy lub seminaria na SGGW, Politechnice Warszawskiej, Akademii Medycznej
w Warszawie, Uniwersytacie Medycznym w Łodzi. Profesorowie Instytutu
byli członkami Rad Wydziałów (SGGW i Uniwersytetu Kazimierza Wielkiego
w Bydgoszczy).

Bardzo cenione przez studentów były praktyki odbywane w Instytucie.
Byli to studenci SGGW, Politechniki Warszawskiej, Politechniki Łódzkiej, Uni-
wersytetu Mikołaja Kopernika w Toruniu, Uniwersytetu Szczecińskiego, Uni-
wersytetu Warszawskiego, Uniwersytetu Rolniczego w Krakowie, Uniwersyty-
tu Ekonomicznego w Krakowie, Uniwersytetu Łódzkiego, Uniwersytetu
Przyrodniczego w Poznaniu, Akademii im. Jana Długosz w Częstochowie,
Politechniki Wrocławskiej, Uniwersytetu Technologiczno-Przyrodniczego
w Bydgoszczy i Uniwersytetu Kazimierza Wielkiego w Bydgoszczy. Były to
praktyki 2–4 tygodniowe.
W latach 1950–1990 pracownicy Instytutu opublikowali ogółem 1743 tytuły w tym 98 w czasopismach zagranicznych (Tabela 12).

→ mgr inż. Jadwiga Rothkaehl – 78 (ZZ)
→ dr hab. Karol Borzuta – 53 (OMiT)
→ dr hab. Andrzej Borys, prof. IBPRS – 47 (OMiT)

Obok liczby publikacji ważnym wskaźnikiem jest ich jakość mierzona liczbą punktów.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rok</th>
<th>Publikacje krajowe</th>
<th>Publikacje zagraniczne</th>
<th>Komunikaty, postery</th>
<th>Referaty</th>
<th>Razem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1950–1990</td>
<td>1645</td>
<td>98</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>1993–1994</td>
<td>78</td>
<td>6</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>1995–1996</td>
<td>139</td>
<td>4</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>1977</td>
<td>65</td>
<td>1</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Lp.</td>
<td>Rok</td>
<td>Publikacje krajowe</td>
<td>Publikacje zagraniczne</td>
<td>Konferencje</td>
<td>Razem</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1998–1999</td>
<td>136</td>
<td>10</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2000</td>
<td>45</td>
<td>4</td>
<td>51</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2001</td>
<td>69</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2002</td>
<td>72</td>
<td>6</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2003</td>
<td>78</td>
<td>7</td>
<td>56</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2004</td>
<td>106</td>
<td>5</td>
<td>34</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2005</td>
<td>96</td>
<td>7</td>
<td>52</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2006</td>
<td>79</td>
<td>8</td>
<td>42</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2007</td>
<td>95</td>
<td>6</td>
<td>31</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2008</td>
<td>119</td>
<td>2</td>
<td>37</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2009</td>
<td>181</td>
<td>–</td>
<td>137</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2010</td>
<td>147</td>
<td>5</td>
<td>111</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2011</td>
<td>169</td>
<td>6</td>
<td>105</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Razem</td>
<td>3431</td>
<td>186</td>
<td>985</td>
<td>985</td>
<td></td>
</tr>
<tr>
<td>Zakład</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>RAZEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liczba wszystkich publikacji</td>
<td>Liczba punktów publikacji punktowanych</td>
<td>Liczba wszystkich publikacji</td>
<td>Liczba punktów publikacji punktowanych</td>
<td>Liczba wszystkich publikacji</td>
<td>Liczba punktów publikacji punktowanych</td>
</tr>
<tr>
<td>ZF</td>
<td>24</td>
<td>20</td>
<td>15</td>
<td>48</td>
<td>60</td>
<td>109</td>
</tr>
<tr>
<td>ZM</td>
<td>24</td>
<td>46</td>
<td>12</td>
<td>4</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>ZAŻ</td>
<td>7</td>
<td>22</td>
<td>6</td>
<td>12</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>ZP</td>
<td>30</td>
<td>52</td>
<td>45</td>
<td>23</td>
<td>37</td>
<td>81</td>
</tr>
<tr>
<td>ZO</td>
<td>15</td>
<td>37</td>
<td>14</td>
<td>38</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>ZZ</td>
<td>78</td>
<td>28</td>
<td>54</td>
<td>2</td>
<td>72</td>
<td>12</td>
</tr>
<tr>
<td>OK</td>
<td>23</td>
<td>33</td>
<td>26</td>
<td>76</td>
<td>40</td>
<td>71</td>
</tr>
<tr>
<td>OMiT</td>
<td>80</td>
<td>131</td>
<td>77</td>
<td>131</td>
<td>79</td>
<td>133</td>
</tr>
<tr>
<td>OCh</td>
<td>23</td>
<td>49</td>
<td>17</td>
<td>51</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>OC</td>
<td>14</td>
<td>38</td>
<td>19</td>
<td>8</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>PG</td>
<td>8</td>
<td>24</td>
<td>9</td>
<td>58</td>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>Σ</td>
<td>326</td>
<td>480</td>
<td>294</td>
<td>510</td>
<td>320</td>
<td>538</td>
</tr>
</tbody>
</table>

Liczba publikacji ogółem i liczba punktów za publikacje punktowane pracowników IBPRS (lata 2009–2011)

Tabela 13
Sto lat Instytutu

Pracownicy z najwyższą liczbą publikacji i najwyższą liczbą punktów za publikacje wymienione na liście MNiSW (lata 2009–2011)

<table>
<thead>
<tr>
<th>Zakład</th>
<th>Pracownik</th>
<th>Liczba wszystkich publikacji</th>
<th>Pracownik</th>
<th>Liczba punktów</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZF</td>
<td>Stecka K.</td>
<td>37</td>
<td>Miecznikowski A</td>
<td>37,2</td>
</tr>
<tr>
<td></td>
<td>Zielińska K.</td>
<td>24</td>
<td>Stecka K.</td>
<td>14,1</td>
</tr>
<tr>
<td></td>
<td>Miecznikowski A</td>
<td>21</td>
<td>Zielińska K.</td>
<td>13,1</td>
</tr>
<tr>
<td></td>
<td>Misiewicz A.</td>
<td>36</td>
<td>Suchorzyńska M.</td>
<td>36,35</td>
</tr>
<tr>
<td>ZM</td>
<td>Goncarzewicz A.</td>
<td>13</td>
<td>Misiewicz A.</td>
<td>31,1</td>
</tr>
<tr>
<td></td>
<td>Ryszka L.</td>
<td>6</td>
<td>Ryszka L.</td>
<td>6</td>
</tr>
<tr>
<td>ZAŻ</td>
<td>Roszko M.</td>
<td>11</td>
<td>Roszko M.</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Szymczyk K.</td>
<td>11</td>
<td>Szymczyk K.</td>
<td>16,8</td>
</tr>
<tr>
<td></td>
<td>Jędrzejczak R.</td>
<td>9</td>
<td>Czerwiecki L.</td>
<td>9,6</td>
</tr>
<tr>
<td>ZP</td>
<td>Brudzyński A.</td>
<td>38</td>
<td>Salamon A.</td>
<td>43,2</td>
</tr>
<tr>
<td></td>
<td>Salamon A.</td>
<td>35</td>
<td>Baranowski K.</td>
<td>32,7</td>
</tr>
<tr>
<td></td>
<td>Baca E.</td>
<td>29</td>
<td>Baca E.</td>
<td>20,7</td>
</tr>
<tr>
<td>ZO</td>
<td>Marszałek K.</td>
<td>19</td>
<td>Marszałek K.</td>
<td>29,8</td>
</tr>
<tr>
<td></td>
<td>Skąpska S.</td>
<td>17</td>
<td>Lipowski J.</td>
<td>20,8</td>
</tr>
<tr>
<td></td>
<td>Sokołowska B.</td>
<td>10</td>
<td>Skąpska S.</td>
<td>13,45</td>
</tr>
<tr>
<td>ZZ</td>
<td>Rothkaehl J.</td>
<td>78</td>
<td>Rothkaehl J.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Kot M.</td>
<td>42</td>
<td>Szafrąńska A.</td>
<td>8,2</td>
</tr>
<tr>
<td></td>
<td>Mielcarz M.</td>
<td>36</td>
<td>Kot M.</td>
<td>4</td>
</tr>
<tr>
<td>OK</td>
<td>Le Thanh-Blicharz J.</td>
<td>23</td>
<td>Le Thanh-Blicharz J.</td>
<td>41,3</td>
</tr>
<tr>
<td></td>
<td>Zielonka R.</td>
<td>17</td>
<td>Slomińska L.</td>
<td>38,8</td>
</tr>
<tr>
<td></td>
<td>Jarosławski L.</td>
<td>15</td>
<td>Przygoński K.</td>
<td>23,1</td>
</tr>
<tr>
<td>OMiT</td>
<td>Borzuta K.</td>
<td>53</td>
<td>Pospiech E.</td>
<td>85,5</td>
</tr>
<tr>
<td></td>
<td>Borys A.</td>
<td>47</td>
<td>Makala H.</td>
<td>36,5</td>
</tr>
<tr>
<td></td>
<td>Lisiak D.</td>
<td>44</td>
<td>Borys A.</td>
<td>36,4</td>
</tr>
</tbody>
</table>

Patenty IBPRS (1949–2011)

<table>
<thead>
<tr>
<th>Zakład</th>
<th>Pracownik</th>
<th>Liczba patentów</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCh</td>
<td>Polak E.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Markowska J.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Królasik J.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Stęplewska U.</td>
<td>10,6</td>
</tr>
<tr>
<td></td>
<td>Polak E.</td>
<td>10,3</td>
</tr>
<tr>
<td></td>
<td>Kuleta P. i Majczyna D.</td>
<td>10</td>
</tr>
<tr>
<td>OC</td>
<td>Baryga A</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Poleć B.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Waleriańczyk E.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Kowalska M.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Baryga A.</td>
<td>15,9</td>
</tr>
<tr>
<td></td>
<td>Waleriańczyk E.</td>
<td>14</td>
</tr>
<tr>
<td>PG</td>
<td>Czupryński B.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Kotarska K.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Czupryński B.</td>
<td>66,5</td>
</tr>
<tr>
<td></td>
<td>Kotarska K.</td>
<td>66,5</td>
</tr>
</tbody>
</table>

Instytut Biotechnologii Przemysłu Rolno-Spożywczego (1949–2011)

<table>
<thead>
<tr>
<th>Tabela 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instytut Biotechnologii Przemysłu Rolno-Spożywczego (1949–2011)</td>
</tr>
<tr>
<td>Instytut Przemysłu Mięsnego i Tłuszczowego (do 2008 r.)</td>
</tr>
<tr>
<td>Centralne Laboratorium Przemysłu Koncentratów Spożywczych (do 2002 r.)</td>
</tr>
<tr>
<td>Centralne Laboratorium Przemysłu Ziemniaczanego (do 2007 r.)</td>
</tr>
<tr>
<td>Centralne Laboratorium Chłodnictwa (do 2007 r.)</td>
</tr>
<tr>
<td>Centralny Ośrodek Badawczo-Rozwojowy Przemysłu Gastronomicznego i Artykułów Spożywczych (do 2007 r.)</td>
</tr>
<tr>
<td>Centralne Laboratorium Technologii Przetwórstwa i Przechowalnictwa Zbóż (do 2002 r.)</td>
</tr>
<tr>
<td>Zakład Badawczy Przemysłu Piekarskiego (do 2002 r.)</td>
</tr>
<tr>
<td>Instytut Przemysłu Cukrowniczego (do 2008 r.)</td>
</tr>
<tr>
<td>RAZEM</td>
</tr>
</tbody>
</table>
Największą liczbę patentów uzyskali:

1. dr inż. Marian Remiszewski, prof. IBPRS – 24 patenty (OK)
2. dr inż. Leszek Jarosławski – 17 patentów (OK)
3. mgr inż. Roman Zielonka – 15 patentów (OK)
4. dr inż. Antoni Miecznikowski – 15 patentów (ZF)
5. dr hab. Krystyna Stecka, prof. IBPRS – 14 patentów (ZF)
6. dr inż. Krystyna Zielińska – 14 patentów (ZF)
7. inż. Eugeniusz Korbas – 14 patentów (OK)

Prace wykonane w IPF, a później w IBPRS były nagradzane lub wyróżniane na licznych wystawach i targach krajowych i zagranicznych. Pracownicy zostali uhonorowani nagrodami specjalnymi, dyplomami, medalami. W sumie około 290 pozycji w latach 1952–2012 (Wykaz w Załączniku 1).
ZACŁAD TECHNOLOGII FERMENTACJI

(do 2008 r. Zakład Technologii Spirytusu i Drożdży)

Kierownik
dr hab. Krystyna M. Stecka, prof. IBPRS

1. Rys historyczny

W początkowej fazie istnienia Zakładu Technologii Spirytusu i Drożdży prowadzono wiele prac na potrzeby przemysłu spirytusowego. Duże zasługi
w tym zakresie miał inż. Stanisław Mazur, były pracownik firmy Baczewski we Lwowie, znawca i konoser starki. Z Jego wiedzy i doświadczenia korzystali dr Maria Jarosz i prof. dr hab. Kazimierz Jarosz, którzy zajmowali się doskonaleniem jakości tego wyrobu, analizując procesy zachodzące w czasie starzenia (leżakowania) starki.

W zakładzie opracowywano także receptury nowych gatunków wód i innych wyrobów alkoholowych, nad którymi pracowali mgr inż. Janusz Milewski i mgr inż. Barbara Kończak.

W Zakładzie Technologii Spirytusu i Drożdży pracowali również:
→ mgr inż. Stanisław Soczyński, który zajmował się technologią suszenia drożdży piekarskich,
→ mgr Irena Żółtowska – pod Jej kierunkiem prowadzono badania z zakresu mikrobiologii,
→ mgr Czesław Skibniewski – specjalista w zakresie analityki wyrobów alkoholowych,
→ mgr Jerzy Beer – zajmował się analizą chromatograficzną wyrobów alkoholowych,
→ dr inż. Mieczysław Skiba – z Jego udziałem prowadzono prace dotyczące doskonalenia techniki i technologii produkcji drożdży, m.in. nad zastosowaniem różnych systemów napowietrzających w kadziach drożdżowych,
→ dr Jadwiga Tomczyńska opracowywała technologie oczyszczania ścieków.

Po reorganizacji IPF, przystosowującej go do realizacji programu rządowego PR-4 p.n. „Optymalizacja produkcji i spożycia białka”, Zakład został przekształcony w Zakład Technologii Produktów Białkowych, którego kierownikiem został doc. Eugeniusz Rembowski.

Od 1974 do 1983 r. zespoły tego zakładu realizowały tematykę programu rządowego.

W roku 1978 kierownictwo zakładu objął dr inż. Jerzy Czuba. Zakładowi przypadła realizacja pięciu dużych tematów, obejmujących następujące zagadnienia:
→ opracowanie technologii otrzymywania biomasy paszowej z odcieków poddrożdżowych, temat wykonywany pod kierunkiem dr J. Tomczyńskiej (skala mikro- i ćwierć-techniczna) i dr. inż. J. Czuby (skala półtechniczna);
→ optymalizacja technologii zdrożdżowania melasy i wywaru melasowego – temat wykonywany pod kierunkiem mgr inż. Ireny Jaworowskiej w konсуłtacji z doc. dr. inż. St. Łabendzińskim, przy współpracy mgr inż. Krystyny Steckiej;
→ opracowanie technologii otrzymywania biomasy paszowej z metanolu przy użyciu kultur bakteryjnych – temat wykonywany pod kierunkiem dr. inż. Wojciecha Pezińskiego przy współpracy mgr. inż. Tadeusza Izbickiego;

W okresie realizacji programu rządowego PR-4 bardzo szeroki zakres współpracy obejmował ZPS w Żyrardowie, Sieradzu, a także Śląską Fabrykę Drożdży w Wołczynie.

Profil działalności naukowej zakładu obejmował gorzelnictwo melasowe, a później również rolnicze, technologię i automatyzację rektyfikacji, technologię produkcji wódek czystych i gatunkowych, drożdży piekarskich i paszowych oraz zagadnienia ściekowe. Dużo uwagi poświęcono doborowi odpowiednich ras drożdży zarówno gorzelniczych, jak piekarskich i paszowych.

Wieloletni okres badań jakości melasy doprowadził do uzyskania dobrej charakterystyki dostarczanego do zakładów produkujących drożdże piekarskie, podstawowego surowca, do rozpoznania określonych zmian jakości melasy i konsekwencji technologicznych przez to wywołanych. Podejmowano próby korygowania właściwości przerobowych melas wadliwych oraz ustalono zależności pomiędzy wskaźnikami analitycznymi, a przydatnością poszczególnych partii do celów drożdżowniczych lub gorzelniczych (mgr inż. I. Jaworowska, mgr I. Żółtowska, mgr inż. K. Stecka).

Prowadzono wielokierunkowe próby wykorzystania różnych surowców w gorzelnictwie, odpadów z przetwarzania owoców i warzyw (m.in. wyłoków jabłkowych), a także dyni, kukurydzy, sorgo, oraz surowców zasobnych w celulozę (po jej zhydrolizowaniu) (prof. dr hab. K. Jarosz, dr inż. A. Jarosz).

Znaczący potencjał badawczy skierowany był również na doskonalenie materiału biologicznego, wykorzystywanego w gorzelnictwie rolniczym i me-

Podjęto także badania nad doskonaleniem szczepów drożdży gorzelniczych i piekarskich w kierunku uzyskania oporności na wysokie ciśnienie osmotyczne i wyższe stężenie etanolu. Uzyskano drożdże gorzelnicze, tolerujące stężenie etanolu powyżej 12%, które są wykorzystywane w gorzelniach do tej pory (dr inż. Anna Salek).

Zakład Technologii Spirytusu i Drożdży wypracował bardzo dobre relacje z zakładami przemysłu spirytusowego i z drożdżowniami. W początkowym okresie najbliższa współpraca nawiązana została z zakładami w Goświnowicach, Raciborzu, Józefowie i Maszewie, później grono partnerów rozszerzyło się o kolejne drożdżownie – w Lublinie, Kętrzynie, Wolczynie i Krakowie oraz gorzelnie rolnicze w Kowalkowicach, Niemodlinie, Lubieniu Kujawskim, Strzelcach, Niewieścinie, Wojnowie.

ZTSiD swoje sukcesy zawdzięcza współpracy z przemysłem. Stały kontakt z fabrykami drożdży piekarskich, gorzelniami oraz Ośrodkami Doradztwa Rolniczego stwarzał możliwość głębokiej analizy potrzeb rozwojowo-modernizacyjnych przemysłu i rolnictwa, co w połączeniu ze znajomością najnowszych osiągnięć biotechnologii oraz doskonałym warsztatem badawczym zaoferowało licznym osiągnięciami. Do niewątpliwych osiągnięć ZTSiD można zaliczyć cykl prac dla przemysłu drożdży piekarskich.

Po wielokierunkowej ocenie wartości technologicznej, połączonej z badaniem stabilności cech biotechnologicznych oraz opracowaniem parametrów namnażania, wyselekcjonowane przez dr inż. A. Salek szczepy zostały w latach 1992–96 wdrożone do praktyki przemysłowej prawie wszystkich krajowych drożdżowni.

Otrzymane w IBPRS szczepy charakteryzują się osmofilnością, co było motorem napędowym badań nad opracowaniem nowej, wysokozaawansowanej technologii hodowli drożdży w bardzo „gęstych brzeczkach”. W ramach projektu celowego, współfinansowanego przez KBN, w Śląskiej Fabryce Drożdży w Wołczynie uruchomiono, największą w kraju, kadź fermentacyjną o pojemności 150 m³. Produktywność biomasy osiągana w tej kadzi była znacznie wyższa w porównaniu do osiąganych w kadziach starego typu, czego wynikiem było również podniesienie efektywności ekonomicznej procesu namnażania biomasy drożdżowej.

W latach 1994–2003 na zlecenia krajowych drożdżowni wykonywano badania, których efektem była systematyczna poprawa aktywności fermentacyjnej drożdży i ich czystości mikrobiologicznej oraz obniżanie kosztów produkcji w wyniku optymalizacji procesu technologicznego.

Ciekawym rozwiązaniem było zastosowanie bakterii Zymomonas mobilis do przerobu surowców skrobiowych na alkohol przeznaczony na cele paliwowe. Wykonano po raz pierwszy w kraju próby w skali technicznej w gorzelni Radzicz (mgr Elżbieta Rzepka, mgr Danuta Kotyrba, dr inż. K.M. Stecka).
W wyniku sprzedaży wszystkich krajowych drożdżowni firmom zagranicznym zakończono prace badawcze, dotyczące technologii drożdży, głównymi kierunkami badań stały się prace z zakresu fermentacji mlekowej i fermentacji alkoholowej.

2. Teraźniejszość

Opracowano również technologie otrzymywania biopreparatów przeznaczonych do kiszenia pasz, są to: Lactosil, Lactamyl, Lactivel, Lactozym. Badania obejmowały izolacje szczepów bakterii fermentacji mlekowej ze środowisk naturalnych, ich selekcję, dodatek wybranych enzymów oraz opracowanie technologii produkcji. Wszystkie wymienione biopreparaty skomponowano uwzględniając specyfikę krajowych pasz, a skuteczność ich działania została sprawdzona przez specjalistów z Instytutu Zootechniki w Krakowie, Zakładu Doświadczalnego Instytutu Hodowli i Aklimatyzacji Roślin, Akademii Rolniczej w Poznaniu i potwierdziła się w praktyce rolniczej. Zastosowanie biopreparatów do konserwacji pasz metodą zakiszania powoduje poprawę jakości oraz strawności zawartych w nich składników pokarmowych, takich jak skrobia czy włókno surowe.

Zakład Technologii Fermentacji

ska (z Instytutu Zootechniki w Krakowie) otrzymał nagrodę II stopnia Ministra Rolnictwa i Gospodarki Żywnościowej, za prace pt.: „Opracowanie i wdrożenie do praktyki rolniczej technologii otrzymywania biopreparatów probiotycznych i do kiszenia pasz”. Opracowane technologie zostały nagrodzone medalami na Międzynarodowych Targach INTERTECHNOLOGY’98 i 99 w Łodzi oraz na Wystawie Wymalazków INNOWACJE’98 w Gdyni.

Cykl wieloletnich badań n.t. „Biopreparaty nowej generacji dla przemysłu spożywczego i rolnictwa” został uhonorowany: 12 medalami i 1 nagrodą specjalną na międzynarodowych wystawach wynalazków, 2 nagrodami Ministra Nauki i Szkolnictwa Wyższego za międzynarodowe osiągnięcia wynalazcze (Genewa, Bruksela, Moskwa, Paryż, Budapeszt, Norymberga, Seul, Poznań, Kuala Lumpur, Warszawa, Szanghaj), 6-krotnie otrzymanym certyfikatem Lider Rynku w kategorii Produkt i 3-krotnie certyfikatem Euro Lider Rynku (Rzeszów).

W wyniku badań nad bioróżnorodnością i biotechnologicznym wykorzystaniem bakterii fermentacji mlekowej zakład uruchomił półtechniczną linię do produkcji probiotyków i preparatów do kiszenia pasz. Produkowane w IBPRS preparaty zostały ocenione przez placówki naukowe, doradztwa rolniczego i rolników jako wysoce efektywne w działaniu, są notyfikowane przez EFSA i dopuszczone do stosowania w Unii Europejskiej. W 2009 r. zespół otrzymał nagrodę Ministra Rolnictwa i Rozwoju Wsi za „Uruchomienie produkcji nowej generacji preparatów bakterii fermentacji mlekowej dla rolnictwa”.

Nowe kierunki badawcze ZTSiD, których inicjatorką była dr Antonina Komorowska to otrzymywanie ekstraktów i autolizatów drożdżowych, kompleksowe frakcjonowanie biomasy drożdżowej, izolacja białka drożdżowego i jego hydrozyla enzymatyczna. Badania te są kontynuowane pod kierunkiem mgr inż. Joanny Rozmierskiej. Ze względu na zapotrzebowanie przez przemysł na preparaty pochodzenia drożdżowego opracowywane technologie mają dużą szanse wdrożenia, a zakres badań nad ich otrzymywaniem jest systematycznie rozszerzany.

Istotnym obszarem działalności badawczej zakładu jest tematyka obejmująca prace analityczne, związane z oceną obecności w wyrobach alkoholowych związaków smakowo-zapachowych. Początki tej działalności sięgają lat 70. kiedy to analizowano w destylacie rolniczym obecność ubocznych produktów fermentacji alkoholowej – mgr J. Beer, później inż. Ewa Witkowska.

W kolejnych latach tematyka dot. Oceny jakości wyrobów alkoholowych była rozwijana przez dr. inż. J. Milewskiego i dr Marię Zbieć, która rozpoczę-
la badania nad obecnością związków smakowo-zapachowych w gatunkowych wyrobach alkoholowych, ich identyfikacją techniką GC-MS. Obecnie, prace te są prowadzone pod kierunkiem dr inż. Renaty Choińskiej; realizowane są również badania nad identyfikacją związków smakowo-zapachowych, w fermentujących zakwasach piekarskich i różnych rodzajach pieczywa. Badania prowadzone są w połączeniu z oceną sensoryczną analizowanych produktów.

Z uwagi na to, że zakład rozszerzył zakres swojej działalności merytorycznej o badania nad otrzymywaniem wieloskładnikowych preparatów probiotycznych dla zwierząt oraz opracowaniem technologii wytwarzania bioprepapratów do kiszenia pasz, w 2003 roku został przekształcony w Zakład Technologii Fermentacji.

Kolejnym opracowaniem zakładu jest „Sposób produkcji bezpiecznej żywności i pasz o podwyższonej jakości”. Istotę tego opracowania stanowi zastosowanie w przemyśle spożywczym i rolnictwie szczepów drożdży i bakterii fermentacji mlekowej o zdolnościach do biosyntezy enzymów amylolitycznych. Amylolityczne drożdże i bakterie fermentacji mlekowej zastosowano w procesach produkcji destylatu rolniczego, pieczywa i ciast, fermentowanych pasz i żywności, co pozwoliło na produkcję nowych asortymentów bezpiecznej żywności specjalnego przeznaczenia. Ich zastosowanie w wymienionych dziedzinach przyczyniło się do wzrostu jakości produktów i obniżenia kosztów ich wytwarzania (prof. dr hab. R.A. Grzybowski, dr inż. K.M. Stecka, dr inż. K. Zielińska, mgr inż. A. Miecznikowski, mgr inż. A. Suterska, dr inż. K. Piasecka-Jóźwiak).

Opracowanie zostało nagrodzone 7 medalami i 1 nagrodą specjalną na międzynarodowych wystawach wynalazków, innowacji, badań naukowych (Genewa, Bruksela, Paryż, Moskwa, Zagrzeb, Warszawa, Norymberga), 2 nagrodami Ministra Nauki i Szkolnictwa Wyższego za międzynarodowe osiągnięcia wynalazcze.

Ważnym osiągnięciem Zakładu Technologii Fermentacji są również „Preparaty pochodzenia drożdżowego jako naturalne dodatki do żywności”. Naturalne dodatki do żywności otrzymywane są z drożdży piekarskich i po-produkcjnych drożdży piwowarskich i winiarskich. Preparaty pochodzenia drożdżowego wykazują właściwości funkcjonalne, sensoryczne i żywieniowe. Autolizaty drożdżowe stanowią składnik podłoży mikrobiologicznych, dodatek do pieczywa, farszów mięsnich i grzybowych. Ekstrakty drożdżowe wnoszą do żywności cechy sensoryczne dzięki zawartości naturalnych intensyfikatorów smaku, ponadto charakteryzują się wysoką wartością odżyw-
Zakład Technologii Fermentacji

Opracowanie zostało nagrodzone 7 medalami na międzynarodowych wystawach wynalazków, statuetką „Lider Innowacji”, nagrodą Ministra Edukacji i Nauki za międzynarodowe osiągnięcia wynalazcze (Bruksela, Genewa, Warszawa, Moskwa, Sewastopol, Katowice, Norymberga, Paryż, Szanghaj).

W ostatnich latach rozszerzono zakres badań zakadu o problematykę:
→ otrzymywania i zastosowania kultur starterowych na potrzeby przemysłu piekarskiego,
→ otrzymywania i zastosowania kultur starterowych przeznaczonych do produkcji kiszonek warzywnych.

wynalazcze (Genewa, Warszawa, Zagrzeb, Bruksela, Bukareszt, Sewastopol, Moskwa), nagrodą Ministra Rolnictwa i Rozwoju Wsi (2010).

Biorąc pod uwagę potrzeby przemysłu opracowano kultury starterowe do kiszenia ogórków, papryki, patisonów i pomidorów, które chronią kiszonki warzywne przed zepsuciem i obecnością w nich mikroflory patogennjej. Preparat do kiszenia ogórków został wdrożony w firmie Bracia Urbanek J.A.W. Urbanek i zgłoszony do opatentowania.

Ważnym, z punktu widzenia bezpieczeństwa żywności, jest opracowanie pt.: *Biotechnologiczna metoda dekontaminacji pasz skażonych ochratoksyną A i bakteriami patogennymi*. Istotą opracowania jest zastosowanie do dekontaminacji skażonych pasz nowego szczepu bakterii fermentacji mlekowej o zdolności do hamowania rozwoju niepożądanych mikroorganizmów oraz eliminacji ochratoksyny A ze środowiska. Wykorzystanie wynalazku w praktyce jest ważne w wymiarze społecznym i spełnia oczekiwania producentów m.in. ekologicznej żywności. Zastosowanie preparatu zawierającego szczep bakterii, o zdolności do eliminacji patogenów i ochratoksyny, a powoduje dekontaminację pasz objętościowych, w związku z czym mogą być one skarmiane zwierzętami, a żywność pochodząca zwierzęcego jest wówczas bezpieczna dla ludzi (dr inż. K. Zielińska, dr inż. K.M. Stecka, mgr inż. Agata Kapturowska, mgr inż. M. Kupryś, mgr inż. A. Miecznikowski).

Opracowanie zostało nagrodzone dwoma medalami na międzynarodowych wystawach wynalazków (Warszawa, Norymberga).
Zakład Technologii Fermentacji oferując atrakcyjny program badawczy, swoją wiedzę systematycznie doskonaloną w licznych kontaktach ze światowymi liderami w dziedzinie biotechnologii, doświadczenie wynikające z wieloletniej współpracy z przemysłem i rolnictwem oraz doskonały warsztat badawczy, wyposażony w nowoczesną aparaturę, systematycznie poszerza grono chętnych do współpracy partnerów przemysłowych. Taki styl działania stimuluje wdrażanie opracowanych produktów i technologii do praktyki.

We współpracy z gorzelniami opracowano preparat i metodę kiszenia ziarna kukurydzy na cele paszowe i do przerobu w gorzelni. W 2011 r. zespół otrzymał nagrodę Ministra Rolnictwa i Rozwoju Wsi za rozwiązanie: Wdrożenie energooszczędnej technologii etanolu paliwowego z kiszonego ziarna kukurydzy (prof. dr hab. R.A. Grzybowski, dr hab. K.M. Stecka, dr inż. K. Zielińska, dr inż. A. Miecznikowski).

3. Dorobek patentowy, naukowy (projekty badawcze) i wdrożeniowy (projekty celowe)

Patenty:
4. „Sposób otrzymywania w gorzelniach spirytusu bezpirydynowego do produkcji octu i spirytus bezpirydynowy do produkcji octu, otrzymywany w gorzelniach”, PL nr 170856 (1994).
5. „Nowy szczep Lactobacillus plantarum” PL nr 179838 (2001).

Zgłoszenia patentowe:
2. „Bakterjny preparat do kiszenia pasz” P. nr 388221 (2009).
3. „Nowy szczep bakterii Lactobacillus plantarum S, zastosowanie szczepu bakterii Lactobacillus plantarum S oraz preparat do kiszenia pasz objętościowych” P. 391534 (2010).
4. “New strain of Lactobacillus plantarum S, the use of the strain of Lactobacillus plantarum and the preparation for roughages ensiling” Internal application PCT/PL2011/000059 (2011).
Projekty badawcze zrealizowane w Zakładzie:

Ważnym obszarem badań zakładu jest cykl projektów z zakresu rolnictwa ekologicznego, finansowanych przez MRiRW. W latach 2004–2010 głównym celem była poprawa jakości i higieny pasz objętościowych przeznaczonych do żywienia krów mlecznych, a w konsekwencji poprawa jakości mleka pochodzącego z gospodarstw ekologicznych. Opracowano skład preparatu bakteryjno-mineralno-witaminowego i wdrożono jego stosowanie w produkcji kiszonek z runi łąkowej. Wynikiem tych badań jest także patent. Szczepy bakterii fermentacji mlekowej wchodzące w skład preparatu w procesie kiszenia hamują rozwój pleśni i bakterii patogennych (Salmonella sp., Escherichia coli, Clostridium perfringens i Listeria sp. oraz powodują obniżenie zawartości w kiszonkach aflatoksyn i ochratoksyny A od 50 do 100%, w stosunku do ich zawartości w materiale roślinnym. W wyniku doświadczeń dotyczących wpływu jakości paszy na jakość mleka pochodzącego z gospodarstw ekologicznych stwierdzono, że żywienie krów mlecznych wysokiej jakości kiszonym, wytwarzonymi z dodatkiem preparatu bakteryjno-mineralno-witaminowego, jest jednym z ważnych elementów produkcji mleka charakteryzującego się wysoką zawartością białka i tłuszczu, niską zawartością komórek somatycznych, brakiem aflatoksyny M₁ i ochratoksyny A oraz bakterii patogennych.
W 2011 r. zrealizowano 2 projekty: Ekologiczne metody produkcji pieczywa i produktów zbożowych oraz metody wydłużania trwałości, świeżości i parametrów przechowalniczych tych wyrobów, Ekologiczne metody przetworstwa owoców i warzyw z uwzględnieniem właściwości prozdrowotnych otrzymanych produktów.

Zakład wdrożył wyniki badań w następujących zakładach w ramach realizacji projektów celowych:
1. Śląska Fabryka Drożdży Sp. z o.o. – Adaptacja nowego typu fermentora do hodowli drożdży piekarskich oraz badania nad poprawą efektywności procesu namnażania biomasy i podwyższeniem jej jakości.

Zrealizowano również projekty celowe dla małych i średnich przedsiębiorstw:

Działalność badawcza Zakładu Technologii Fermentacji obecnie obejmuje:
→ tworzenie, poszerzanie oraz przechowywanie zbiorów szczepów bakterii fermentacji mlekowej i drożdży o znaczeniu aplikacyjnym,
wykorzystywanie bioróżnorodności bakterii fermentacji mlekowej do poprawy bezpieczeństwa oraz jakości żywności i pasz oraz ocenę aktywności metabolicznej tych bakterii,
wykorzystywanie drożdży do otrzymywania bioaktywnych preparatów: probiotyków dla zwierząt, wieloskładnikowych kultur starterowych dla piekarstwa, funkcjonalnych dodatków do żywności, dodatków paszowych,
badanie parametrów kinetycznych fermentacji alkoholowej – podwyższenie produktywności i wydajności alkoholu (zastosowanie nowych mikroorganizmów; ocena efektywności stosowania nowych preparatów enzymatycznych, modyfikacje wybranych operacji jednostkowych),
badania nad opracowywaniem ekologicznych metod produkcji żywności i pasz,
opracowywanie nowych napojów spirytusowych i wyrobów winiarskich z wykorzystaniem krajowych owoców, a w szczególności winogron, ziół i innych dodatków naturalnych,
analizę komponentów smakowo-zapachowych napojów alkoholowych,
ocenę stanu zagrożenia środowiska przez przemysł fermentacyjny wraz z opracowaniem wytycznych ograniczających to zagrożenie,
rozwijanie metod detekcji i identyfikacji modyfikacji genetycznych (GM) w surowcach, paszach i produktach spożywczych.

Realizowany jest również projekt współfinansowany przez UE w Programie POIG Innowacyjna Gospodarka 2007–2013. Wsparcie ochrony własności przemysłowej tworzonej w jednostkach naukowych w wyniku prac B+R „Nowy szczep bakterii Lactobacillus plantarum S o zdolności degradacji ochratoksyny A i jego zastosowanie do dekontaminacji pasz objętościowych”.

Istotnym obszarem działalności zakładu są prace badawcze z zakresu biologii molekularnej. Na potrzeby realizowanych prac badawczo-rozwojowych opra-
cowano szybką metodę identyfikacji bakterii fermentacji mlekowej. Określono
optymalną strategię genetycznej identyfikacji szczepów bakterii fermentacji
mlekowej, która polega na porównaniu odczytyanych sekwencji genów kodują-
cych 16S rRNA z sekwencjami bakteryjnych 16S rDNA zdeponowanymi w ba-
zie GenBank oraz przeprowadzeniu analizy DNA metodą RAPD-PCR (podczas
której prowadzona jest losowa amplifikacja polimorficznych regionów genomow-
ego DNA) i typowania molekularnego metodą rep-PCR (polegającą na ampli-
fikacji sekwencji powtórzonych zlokalizowanych w różnych regionach genomow-
ego DNA). Typowanie molekularne metodą RAPD-PCR oraz rep-PCR,
wykazuje wysoką siłę dyskryminacyjną. Na tej podstawie obydwie techniki oce-
niono jako bardzo przydatne w dziedzinie międzygatunkowego i – zwłaszcza –
wewnątrzgatunkowego różnicowania szczepów bakterii fermentacji mlekowej.
Do stosowanych metod różnicowania mikroorganizmów wprowadzono także
nowatorską technikę MLST (ang. Multilocus Sequence Typing). Technika ta
opiera się na analizie porównawczej sekwencji sześciu genów metabolizmu pod-
stawowego (ang. house-keeping genes). Metoda MLST wykazała wysoką siłę
dyskryminacyjną przy różnicowaniu blisko spokrewnionych szczepów Lactoba-
cillus plantarum (dr Joanna Zawadzka-Sieradzka).

W ramach certyfikatu akredytacji IBPRS nr AB 452 zakład dysponuje akre-
dytowanymi metodami badawczymi oznaczania wyróżników fizykochemicz-
nych win i napojów spirytusowych (osoby upoważnione do wykonywania
badań: inż. Teresa Zalewska, mgr inż. Anna Dworska, mgr inż. M. Kupryś,
dr Renata Choińska, mgr inż. Elżbieta Bartosiak) oraz obecności GMO w ziar-
nie i artykułach żywnościowych (upoważnione do badań są: mgr D. Kotyrba,
mgr inż. Joanna Bucka). Nadzór nad dokumentacją systemu zarządzania w ZF
sprawuje mgr E. Rzepka przy współpracy Beaty Sakowskiej.

4. Kadra Zakładu

Podstawowym ogniwem funkcjonowania zakładu jest jego personel naukowy
i pomocniczy. W Zakładzie Technologii Fermentacji aktualnie zatrudnionych
jest 29 osób:
 → na stanowisku prof. IBPRS – dr hab. K.M. Stecka
 → 7 – na stanowisku adiunkta – dr inż. K. Zielińska, dr inż. K. Piasecka-Jóź-
wiak, dr inż. A. Miecznikowski, dr J. Zawadzka-Sieradzka, dr R. Choiń-
iska, dr Hanna Giryn, dr n. wet. Ilona Stefańska

82
Zakład Technologii Fermentacji
→ 6 – na stanowisku specjalisty badawczo-technicznego – mgr E. Rzepka, inż. T. Zalewska, mgr E. Szkudzińska-Rzeszowiak, mgr D. Kotyrba, mgr inż. E. Bartosiak, mgr inż. A. Dworska,
→ 8 – na stanowisku technologa – mgr inż. Monika Kliszcz, mgr inż. M. Świątek (pracownik z blisko 1,5-rocznym stażem pracy, planowany do przekwalifikowania w b.r. na stanowisko asystenta), oraz personel techniczny: Jarosław Darecki, Wiesława Jablecka, Halina Jurkowska, Anna Kulik, Cezary Michalski, Barbara Pasterz, Łukasz Tulik
→ sekretarka – Beata Sakowska
→ pracownik pomocniczy – Jolanta Sasin

Udział merytoryczny w badaniach nad otrzymywaniem preparatów probiotycznych i do kiszenia pasz ma prof. dr hab. R.A. Grzybowski.

5. Perspektywy i plany na przyszłość

Aktualnie na świecie w technologii żywności i pasz obserwuje się tendencję do stosowania szczepów wyizolowanych ze środowiska naturalnego. Preparaty określane mianem „preparatów nowej generacji” powinny zawierać nie tylko drobnoustroje odpowiednie do danego procesu technologicznego, ale również charakteryzujące się pochodzeniem związanym ze stosowanymi surowcami, rejonem geograficznym i biocenozą. W rozważaniach nad zastosowaniem drobnoustrojów w przemyśle zwraca się uwagę na ekologię drobnoustrojów; ważne jest aby do określonych środowisk, a więc np. do produkcji żywności i pasz, trafiały mikroorganizmy rodzime, wywodzące się z danego ekosystemu.

W najbliższych latach w ZF planuje się prowadzenie prac badawczo-rozwojowych, z elementami badań podstawowych, w następujących obszarach:
→ Izolacja, charakterystyka aktywności metabolicznej, w tym metodami biologii molekularnej (metabolomika, proteomika) i ocena przydatności aktywnych mikroorganizmów do poprawy jakości oraz bezpieczeństwa żywności i pasz.
→ Ocena aktywności metabolicznej bakterii fermentacji mlekowej i drożdży w kierunku syntezy związków smakowo-zapachowych w warunkach fermentacji mlekowej i alkoholowej.
→ Charakterystyka przydatności drożdży do syntezy tłuszczu i optymalizacja jej warunków.
→ Opracowywanie kultur starterowych na potrzeby technologii krajowych produktów mleczarskich.
→ Badanie oporności bakterii fermentacji mlekojowej na stres termiczny i ocena wpływu różnych metod oraz warunków dehydracji na przeżywalność bakterii.
→ Rozwijanie metod identyfikacji obecności modyfikacji genetycznych (GM) w produktach spożywczych.
ZAKŁAD MIKROBIOLOGII

ZMTiB – kierownicy:
1966–1973 – doc. dr Wiesław Rzędowski
od 2005 – dr Anna Misiewicz

Zakład Mikrobiologii

tacyjnego, półtechnicznej stacji doświadczalnej, w której od roku 1954 do 1959 produkowano dekstran dla celów leczniczych.

W 1970 zostały zakończone badania nad opracowaniem technologią wytwarzania grzybowych preparatów amylolitycznych i uruchomiono produkcję preparatów o nazwie „Amylopol P” (60–70 jedn. AS/g) i „Amylopol SE” (250 jedn. AS/g). Przygotowywano równocześnie technologię biosyntezy enzymów celulolitycznych i termostabilnych preparatów pektylnolitycznych (W. Rzędowski, Andrzej Bernat, Danuta Ostaszewicz, Henryk Kluszczyk i W. Grandus).

W tym samym okresie opracowana została metoda otrzymywania suszonych drożdży spożywczych i preparatów ekstraktów drożdżowych (prof. Olga Ilnicka-Olejniczak, mgr Maria Brzozowska i mgr Maria Lipiec). Opracowano nowoczesną metodę otrzymywania dekstranu drogą mikrobiologiczną (mgr Maria Brzozowska).

W roku 1974 do eksploatacji oddana została Stacja Doświadczalna w Jaśle, wyposażona w dwa fermentory o poj. 6 i 7 m³.

W końcu roku 1973 kierownictwo ZMTiB objęła doc. dr hab. Janina Malanowska. Zakres prac Zakładu obejmował badania nad enzymami pochodzenia mikrobiologicznego: celulazy, proteinazy, enzymy pektylnolityczne, glukoamylazę, oksydazę glukozową i izomerazę glukozową. W tym okresie prace nad technologią neutralnej proteazy doprowadzone zostały do stadium prób otrzymywania w skali stacji doświadczalnej. Wyprodukowany preparat neutralnej proteazy w postaci suszonych preparatów koncentratu o s.m. 50% posiadał aktywność 100 tys. jedn. Hb/cm³ (dr Regina Sawicka-Żukowska, dr Andrzej Zakrzewski i dr Grażyna Zięba).

Znaczny nakład pracy poświęcono hydrolizie enzymatycznej celulozy. Dr Andrzej Bernat pracował nad metodą uzyskiwania enzymów celulolitycznych. Prof. Olga Ilnicka-Olejniczak z mgr Barbarą Jędrychowską i dr Janiną Malanowską zajmowały się przetwarzaniem hydrolizatów celulozy w biomasę zasobną w białko.
Ważnym zadaniem badawczym było opracowanie technologii biosyntezy glukoamylazy, enzymu bardzo ważnego w wielu technologiach wytwarzania żywności. Dr Grażyna Zięba wykorzystując szczep otrzymany z Instytutu Biologii Roślin SGGW otrzymała preparat o aktywności powyżej 10 tys. jedn. GA/cm³ (przy zawartości 50% s.m.).

Kolejnymi enzymami, których metody otrzymywania były obiektem badań były: oksydaza glukozowa (dr Janina Malanowska, doc. Andrzej Krakowiak) oraz izomeraza glukozowa (mgr Maria Brzozowska i mgr Barbara Jędrzychowska, wykorzystując dane doc. Andrzeja Krakowiaka).

W celu ułatwienia i przyspieszenia niezbędnych prac selekcyjnych opracowano w latach 1980–1984 szybkie metody selekcyjne, pozwalające na izolację szczepów grzybów strzępkowych o wysokiej aktywności pektynolitycznej, celulolitycznej, proteolitycznej, amylolitycznej oraz glukoamylazy. Metody te polegały na zastosowaniu odpowiedniego dla danej cechy podłoża selekcyjnego wraz z wywoływaczem oraz na wyborze aktywnej kultury na podstawie stosunku średnicy strefy rozjaśnienia do średnicy kolonii. Posługując się powyższymi metodami otrzymano wiele szczepów charakteryzujących się od 100 do 500% wzrostem aktywności w stosunku do szczepu wyjściowego (doc. dr hab. O. Ilnicka-Olejniczak, mgr inż. Danuta Hornecka, mgr inż. Grażyna Solak, mgr Anna Misiewicz).

W tym czasie nową technologią biosyntezy enzymów była metoda hodowli mikroorganizmów w podłożu stałym. Wykorzystano ją w uruchomionej w 1985 r. w ZPOW „Pektowin” w Jaśle instalacji z grubą warstwą o zdolności produkcyjnej 150 t/r. Równocześnie w Jaśle rozpoczęto budowę instalacji doświadczalnej do hodowli metodą wgłębną (cztery fermentory o poj. 20 m³ o planowanej zdolności produkcyjnej od 250 do 300 t). Budowa tych instalacji wymagała rozszerzenia zakresu i zintensyfikowania badań nad doskonaleniem biosyntezy enzymów.

W tym okresie program badań zrealizowanych przez ZMTiB obejmował następujące zagadnienia:

→ Optymalizacja procesu biosyntezy proteazy przy zastosowaniu szczepu Bacillus subtilis nr 40.

→ Intensyfikacja procesu biosyntezy glukoamylazy metodą hodowli wgłębną w podłożu ciekłym i prace nad jej otrzymywaniem w podłożu stałym.
Zakład Mikrobiologii
Od lewej: Leszek Ryszka, Michalina Suchorzyńska, Ewelina Zastawna, Hanna Cieślak, Anna Misiewicz, Anna Goncerzewicz, Marek Kieliszek.
Nieobecni: Urszula Wetoszka, Justyna Nasiłowska
→ Opracowanie sposobu otrzymywania i stosowania kompleksowego preparatu pektynolityczno-amylolitycznego o nazwie Pektopol PA (prep. o s.m. powyżej 40% i aktywności pow. 60 tys. °PM i 1000 jedn. GA/g).
→ Opracowanie technologii otrzymywania preparatu grzybowej proteazy metodą hodowli w podłożu stałym (aktywność kwaśnej proteazy pow. 70 tys. jedn. Hb/g preparatu o s.m. pow. 40%).
→ Opracowanie technologii oczyszczania i zatężania preparatów pektynolitycznych i kwaśnej proteazy przy zastosowaniu ultrafiltracji (zwiększenie aktywności do 100–300 tys. °PM) przy 2–3-krotnym oczyszczeniu z substancji balastowych, w tym z metali ciężkich.
→ Intensyfikacja procesu biosyntezy glukoamylazy i uzyskanie aktywności rzędu 10–12 tys. jedn. GA/cm³ (s.m. 40%) w ciągu 72 godz.
→ Opracowanie technologii produkcji glukoamylazy metodą hodowli w podłożu stałym i uzyskanie preparatu o aktywności rzędu 5 tys. jedn. GA/g (hodowla w podłożu stałym jest tańsza, niż metoda wgłębna w fermentorach).

Równolegle prowadzono szeroki zakres badań nad toksycznością preparatów, współdziałając z Akademią Medyczną w Łodzi, dzięki czemu uzyskano zgodę PZH i Gł. Insp. Sanitarnego na produkcję i stosowanie wytwarzanych w Jaśle preparatów enzymatycznych.

Równolegle badano różne operacje jednostkowe związane z wydzieleniem biomasy z podłoża hodowlanego i prowadzono prace nad stosowaniem preparatów enzymatycznych w przemyśle spożywczym i innych.

W zakresie badania właściwości enzymów i ich otrzymywania (dr hab. Bogdan Sieliwanowicz, prof. dr hab. Andrzej Krakowiak, doc. dr Maria Trzcińska, dr Regina Sawicka-Żukowska, dr Leszek Ryszka, dr Joanna Czakaj, mgr inż. Barbara Jędrychowska, mgr Aurelia Hałasińska) prowadzono prace nad wykorzystywaniem enzymów do doskonalenia jakości i technologii otrzymywania żywności, unieruchamianiem enzymów i komórek drobnoustrojów oraz określaniem ich właściwości katalitycznych i przydatności w technologii żywności, opracowywaniem nowych technologii otrzymywania preparatów enzymatycznych i udoskonalaniem już istniejących.

W następnych latach w ZPOW „Pektowin” w Jaśle wdrożono do produkcji technologię otrzymywania następujących preparatów enzymatycznych: kwaśnej proteazy, preparatu pektynolitycznego o podwyższonej jakości i aktywności, kompleksowego preparatu pektynolitycznego Pektopol PA oraz udoskonalono technologię produkcji glukoamylazy. W wyniku zawartych
Zakład Mikrobiologii

Tematyka badawcza związana z mikrobiologią żywności zapoczątkowana przez doc. dr hab. Danutę Czajkowską oraz dr Agatę Witkowską-Gwiazdowską koncentrowała się na określaniu możliwości wprowadzenia do praktyki mikrobiologicznej metod alternatywnych (turbidymetrycznej, elektrycznej, immunoenzymatycznej) jako szybszych i łatwiejszych w wykonaniu w stosunku do wówczas stosowanych oraz na identyfikacji drobnoustrojów wywołujących niekorzystne zmiany organoleptyczne w produktach spożywczych, jak również identyfikacji patogenicznych bakterii i grzybów wytwarzających mikotoksyny. W bezpośredniej współpracy z przemysłem spożywczym prowadzono stałe kontrole mikrobiologiczne linii technologicznych i ustalano punkty krytyczne oraz wskazywano sposoby likwidacji zagrożeń mikrobiologicznych. Na zlecenie przemysłu i firm prywatnych wykonywano podstawowe i specjalistyczne analizy mikrobiologiczne różnego rodzaju materiałów i surowców. Organizowano seminaria i szkolenia praktyczne z zakresu mikrobiologii żywności dla przedstawicieli przemysłu spożywczego.

Od roku 1983 w ramach ZMTiB funkcjonowała Pracownia Technologii Octu kierowana przez doc. dr. hab. Jerzego Czubę. Niedostateczny stan techniczny oraz niedobory octu na rynku i jego nieodpowiednia jakość wyznaczały podstawowe kierunki prac badawczych, rozwojowych i wdrożeniowych prowadzonych w tym okresie. Tematyka octownicza ukierunkowana była na osiągnięcie znaczącej modernizacji przemysłu i poważnym zwiększeniu jego
zdolności produkcyjnych, ponieważ pokrywał on zapotrzebowanie rynku tylko w 50–60%. W tym czasie opracowano nowy skład pożywki dla bakterii fermentacji octowej oraz udoskonalono technologię wytwarzania octu metodą generatorową i wglębną.

W latach 90. prace naukowo-badawcze z zakresu biosyntezy kwasu octowego (prof. Jerzy Czuba, inż. Irena Sikorska, mgr Katarzyna Warowna, mgr Maria Spera) objęły zagadnienia otrzymywania octu jabłkowego i spiry tusowego o podwyższonej mocy oraz opracowanie, wspólnie z zespołem dr hab. Kazimierza Jarosza, technologii otrzymywania spiry tusu bezpirydynowego do produkcji octu. W ramach projektu realizowanego we współpracy z przemysłem opracowano technologię i podjęto produkcję octu spiry tusowego i słodowego na skojarzonej linii gorzelniczo-octownicznej. Znaczna część prace realizowanych w zespole zakończyła się wdrożeniami w wytwórniach octu. Z zakładami tymi zostały podpisane umowy licencyjne, a także zapro jektowano i zbudowano wysokosprawny fermentor octowy.

Oprócz prac naukowo-badawczych zespół prowadził liczne prace usługowe dla branży octowniczej, które objęły ekspertyzy, analizy chemiczne i mikrobiologiczne octu oraz analizy odwoławcze.

W tym okresie kontynuowano prace badawcze z zakresu doskonalenia biotechnologicznych cech drobnoustrojów przemysłowych oraz biosyntezy enzymów: b-galaktozydazy, lipazy, oksydazy polifenolowej i transglutaminazy. Innym nurtem badawczym były prace dotyczące wykrywania w żywności mikroorganizmów szkodliwych i patogennych (doc. dr hab. Danuta Czajkowska, dr Agata Witkowska, a także izolacji nowych szczepów do zastosowań przemysłowych.

W tym okresie ZMTiB aktywnie zdobywał środki finansowe na badania poprzez realizację projektów badawczych, celowych i europejskich. Prowadzone przez Zakład projekty celowe zakończyły się uruchomieniem produkcji octu spiry tusowego i słodowego w Zawierciu, suszonych aktywnych drożdży winiarskich w Maszewie Lęborskim oraz mączki z gorzycy w Słupcy.

Zaopatrzenie przemysłu w czyste kultury wymagało wysyłki w roku 1959 około 3000 szczepionek, a w roku 1975 zwiększyło się do 4500 i przez kilka lat utrzymywało się na poziomie około 5000, aby następnie stopniowo zmniejszać się z chwilą przejścia przemysłu na suszone, importowane preparaty drożdy.

W zakładzie zaczęto stosować metody biologii molekularnej do identyfikacji i różnicowania bakterii, drożdży i grzybów oraz charakterystyki genów i badania ich zmienności.

Problematyka badawcza Zakładu Mikrobiologii zaczęła mieć w pełni charakter interdyscyplinarny lokując się na styku trzech obszarów nauki: mikrobiologii, genetyki i biotechnologii. Od kilku lat wiodącą specjalnością Zakładu stały się więc analizy mikrobiologiczne i genetyczne (dr Anna Misiewicz, mgr Sylwia Wróblewska, mgr Anna Goncerzewicz).

W Zakładzie Mikrobiologii w 2007 r. wyodrębniono Pracownię Analiz Mikrobiologicznych, w celu walidacji i akredytacji klasycznych metod mikrobiologicznych, także pod kątem metod mikrobiologii molekularnej z wykorzystaniem technik PCR i real-time PCR. Szybkie wykrywanie bakterii patogennych i psujących żywność jest istotne dla producentów żywności, ze względu na krótki czas oczekiwania na wynik. Zastosowanie metod molekularnych także
w obszarze bezpieczeństwa mikrobiologicznego żywności jest jednym z ob-
szarów badań i doskonalaenia metod w ZM (dr Anna Misiewicz, mgr Ilona
Gadomska, mgr Agata Goryluk, mgr inż. Michalina Suchorzyńska).

Badania skoncentrowane są głównie na bakteriach rodzaju *Salmonella* i *Li-
steria*, na które wykrywanie metodami klasycznymi Zakład uzyskał akredyta-
cję w 2008 r.

Waźną częścią Zakładu Mikrobiologii była i jest Kolekcja Kultur Drobno-
ustrojów Przemysłowych. W kolekcji gromadzone są szczepy przemysłowe
(bakterie, drożdże i pleśnie) pochodzenia krajowego i zagranicznego, jak rów-
nież mikroorganizmy wyizolowane przez pracowników Zakładu. Kolekcja ma
przede wszystkim charakter przemysłowy i jej zadaniem jest gromadzenie
and przechowywanie szczepów cennych pod względem technologicznym i stoso-
wanych w produkcji. Gromadzone są także mikroorganizmy będące zakaże-
niami procesów biotechnologicznych, a także szczepy związane z bezpieczeń-
stwem żywności. Kolekcja Kultur Drobnoustrojów Przemysłowych dostarcza
cych kultury dla przemysłu fermentacyjnego, jak również przekazuje szczepy
dla placówek naukowo-badawczych. Poza kolekcjonowaniem i dostarczaniem
kultur dla przemysłu w KKP prowadzone są także badania nad doborem me-
tod przechowywania drobnoustrojów oraz nad opracowaniem szybkich i czu-
lych metod identyfikacji mikroorganizmów. Do lat siedemdziesiątych kultury
bakterii, drożdży i pleśni były hodowane stacjonarnie oraz przechowywane
pod olejem parafinowym Potem systematycznie rozpoczęto badania nad wa-
runkami liofilizacji mikroorganizmów i stopniowo je liofilizowano, a od końca
ienia lat dziewięćdziesiątych zaczęto stosować także mrożenie w ciekłym azoce.

W Kolekcji rozwijane są metody identyfikacji genetycznej drożdży, grzy-
bów strzępkowych i bakterii. Przede wszystkim stosowane są metody oparte
na technice PCR – polimerazowej reakcji łańcuchowej. Szybkość i czułość
tych metod pozwala je uznać za najbardziej wiarygodne z dotychczas opraco-
wanych. Głównymi technikami wykorzystywanymi w ZM są analiza restryk-
cyjna produktów PCR oraz analiza sekwencyjna oparta na genach odpowiednio-
dzialnych za kodowanie cząsteczek RNA rybosomowego (rDNA): 16S rDNA
bakterii oraz 18S rDNA, 26S rDNA i 5.8S rDNA eukariotów.

Rozszerzono tematykę badawczą o analizę genów przyczyniających się do
tworzenia mikotoksyn przez grzyby, porażające zboża, z rodzaju *Fusarium*
(dr Anna Misiewicz, mgr inż. Maria Spera, mgr Agata Goryluk, mgr inż. Mi-
chalina Suchorzyńska). W ramach projektu badawczego i prac statutowych
badano także podstawy genetyczne drożdży winiarskich i piwowarskich.
Kontynuowane prace badawcze związane z drożdżami winiarskimi, miodowymi i sulfitowymi, producentami kwasu foliowego, z uwzględnieniem zmienności genowej (dr Anna Misiewicz, mgr inż. Maria Spera, mgr Anna Goncerzewicz, mgr Ewelina Zastawna).

Współpraca międzynarodowa obejmowała zarówno prace związane z wytwarzaniem octu (dwustronna umowa międzynarodowa ze Słowenią: doc. dr hab. Jerzy Czuba, dr Anna Misiewicz, dr Janja Trcek), współpraca z Japonią (działalność Kolekcji Kultur, dr Anna Misiewicz).

W 2009 r. opublikowano 2 monografie, jedna poświęcona identyfikacji mikroorganizmów oraz bazom danych o nich, druga to katalog KKP pod reakcją dr Anny Misiewicz. W 2011 r. na Kongresie FEMS w Genewie dr Anna Misiewicz wygłosiła referat na temat roli kolekcji kultur przechowujących zasoby o znaczeniu biotechnologicznym pt.: Identified and well-characterized industrial microorganisms from the public collection – an import ant potential for biotechnology (ECCO Special Event European Biological Resources Centres: a Multi-service for life sciences and biotechnology, 26–30.06.2011, Genewa). Efektem tego referatu, było m.in. zaproszenie do udziału w projekcie Microbial Resource Research Infrastructure.

Uzyskano kilka patentów dotyczących drożdży piwowarskich, trwają prace nad następnymi, w ramach POIG, już o zasięgu międzynarodowym (projekty OPI-POIG):

→ Ochrona patentowa wynalazku pt. „Sposób uruchomienia fermentacji octowej w warunkach przemysłowych”, UDA-POIG.010302–00-010/09 M. Spera, I. Sikorska, A. Misiewicz, Projekt POIG w ramach 1.3.2/Działalnienia 1.3. POiG 1;

→ Ochrona patentowa wynalazku dotyczącego szczepów i sposobu otrzymywania prozdrowotnego produktu na bazie pyłku kwiatowego i miodu.
psychcelego, UDA-POIG.0103.02–00-14/10 A. Misiewicz, M. Spera, M. Kieliszek, Projekt POIG w ramach 1.3.2/Działania 1.3. POiG 1;
→ Ochrona patentowa wynalazku dotyczącego szczepu drożdży i sposobu uzyskiwania suszonego preparatu tych drożdży, gwarantującego zachowanie cech technologicznych, umożliwiających fermentowanie brzeczek (miodowych) o wysokich stężeniach cukrów. A. Misiewicz, M. Spera, E. Zastawna, Projekt POIG w ramach 1.3.2/Działania 1.3. POiG 1.

W Zakładzie prowadzone są także prace magisterskie, przede wszystkim studentów Międzywydziałowego Studium Biotechnologii i Wydziału Rolnictwa i Biologii SGGW. W ostatnich siedmiu latach prowadzono 14 takich prac. Większość z nich obroniona została z wyróżnieniem.

Plan na przyszłość obejmują kontynuację współpracy międzynarodowej z kolekcjami europejskimi m.in. poprzez udział w europejskim programie MIRRI, a także akredytację Kolekcji. Planowane jest także rozszerzenie zakresu badań molekularnych, o nowe mikroorganizmy dalsze poznawanie przyczyn genetycznych zmienności organizmów przydatnych biotechnologicznie.

Nagrody

1966
1. Instytut Przemysłu Fermentacyjnego – Wyróżnienie za Pektopol i Kremogeny na Międzynarodowej Wystawie Żywności SIAL w Paryżu.

1972
2. Olga Ilnicka-Olejniczak, Maria Lipiec, Wiesław Rządowski – Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę: „Otrzymywanie drożdży spożywczych”.
3. Wiesław Rządowski – I Nagroda zespołowa Ministra Przemysłu Spożywczego i Skupu za udział w realizacji pracy twórczej przy projekcie wynalazczym nt. „ Ekstrakt kawy zbożowej w proszku uzyskany na drodze enzymatycznej”.

1975
4. Olga Ilnicka-Olejniczak, Maria Lipiec – Nagroda Ministra Leśnictwa za pracę: Zastosowanie nowego stymulatora ekstraktu drożdżowego w celu zwiększenia wydajności i globalnej ilości pozyskiwanej żywicy sosnowej.
5. Regina Sawicka-Żukowska, Antoni Zakrzewski, Wiesław Rzędowski, Janina Malanowska, Grażyna Kostka, Bogna Rycerska – Nagroda II Stopnia Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za pracę: „Opracowanie i wdrożenie technologii otrzymywania bakteryjnego preparatu proteolitycznego Proteopol BP”.

7. Wyróżnienie Przewodniczącego Komitetu ds. Nauki i Postępu Technicznego za udział w realizacji tematu „Opracowanie technologii i wykonanie prototypowej linii produkcyjnej oraz uruchomienie produkcji preparatów pektynolitycznych z zastosowaniem grubowarstwowej metody hodowli drobnoustrojów”.

Patenty

Historia obecnego Zakładu Technologii Przetworów Owocowych i Warzywnych (ZO) sięga 1954 roku. Wtedy to w nowopowstałym Instytucie Przemysłu Fermentacyjnego, którego poprzednikiem był Główny Instytut Przemysłu Rolnego i Spożywczego, obok Działów (Zakładów) Przemysłu Piwowarsko-Słodowniczego, Przemysłu Spirytusowo-Drożdżowego, Mikrobiologii oraz Technologii Wina, utworzony został Zakład Owocowo-Warzywny. Strukturę tego Zakładu stanowiły:

→ Pracownia Technologii Konserw,
→ Pracownia Kontroli Jakości,
→ Pracownia Witamin,
→ Pracownia Organoleptyczna.

W 1959 roku, w wyniku połączenia Zakładu Owocowo-Warzywnego i Zakładu Technologii Wina, utworzony został istniejący obecnie Zakład Technologii Przetworów Owocowych i Warzywnych.

Od początku istnienia Zakładu, kierownictwo w nim pełniły następujące osoby:

→ Dr Stefan Kowalski, absolwent Wydziału Chemicznego Uniwersytetu Warszawskiego, przejął kierownictwo Zakładu na bardzo krótki czas (wrzesień 1955 – marzec 1956), gdyż nagle zmarł.

→ Dr hab. Jan Żałęski, absolwent Wydziału Technologii Rolno-Spożywczej SGGW, specjalista w zakresie technologii przetworów owocowych i warzywnych, pełnił funkcje kierownika ZO od kwietnia 1964 do lipca 1968 roku, a równocześnie w tym okresie sprawował funkcję sekretarza naukowego w Instytucie Przemysłu Fermentacyjnego.

→ Dr inż. Barbara Sewer-Lewandowska, absolwentka Wydziału Chemicznego Politechniki Gdańskiej, ze specjalnością produktów spożywczych, pełniła funkcję kierownika Zakładu w okresie 1973–1990. Jej specjalnością były przede wszystkim pektyny, a opracowana przez jej zespół technologia produkcji wysokojakościowej, średniometylowanej pektyny, wdrożona w ZPOW Pektowin, uzyskała w 1970 r. nagrodę Ministra Przemysłu Spożywczego i Skupu i nagrodę w Konkursie NOT „O jakość wyrobów przemysłu spożywczego”.

→ Dr inż. Ewa Kostrzewa, absolwentka Wydziału Biologii Uniwersytetu Warszawskiego, ze specjalnością biochemia, pełniła funkcję kierownika Zakładu
od stycznia 1991 do lipca 2002 roku. Jako specjalistka od związków smakowo-zapachowych była zatrudniona w Pracowni Technologii i Badania Substancji Smakowo-Zapachowych ZO, pracując najpierw pod kierunkiem prof. dr hab. Krystyny Karwowskiej, a następnie jako kierownik Pracowni. Ma w dorobku wiele opracowań oraz opatentowanych i wdrożonych technologii, m.in. sposób odwadniania kondensatów aromatów owocowych, metodę produkcji ekstraktów z kielków pszennych oraz ekstraktów (oleożywic) z przypraw.

Zakład podzielony jest na cztery pracownie:

→ Pracownia Badania Jakości Fizykochemicznej i Sensorycznej – kierownik mgr inż. Joanna Danielczuk,
→ Pracownia Badania Jakości Mikrobiologicznej – kierownik dr inż. Barbara Sokołowska,

Zakład dysponuje pomieszczeniami laboratoryjnymi do analiz fizykochemicznych, mikrobiologicznych i sensorycznych oraz zmodernizowaną w 2010 roku halą półtechniczną, wyposażoną w podstawowe urządzenia do prowadzenia procesów przetwórczych i komorę chłodniczą.

Od początku istnienia ZO był jednym z głównych ośrodków merytorycznej działalności Instytutu, która ukierunkowana była przede wszystkim na potrzeby przemysłu, intensywnie modernizowanego, zwłaszcza od lat 60. ubiegłego wieku, dzięki importowi nowoczesnych urządzeń produkcyjnych. Spowodowało to potrzeby modyfikacji procesów technologicznych w dostosowaniu do krajowych warunków surowcowych i technicznych, w czym Zakład Technologii Przetworów Owocowych i Warzywnych brał czynny udział.

Zakład prowadził również szeroko zakrojoną działalność szkoleniową dla kadr przemysłu. Ścisłe związki z przemysłem najbardziej widoczne były we współpracy z zakładowym zapleczem doświadczalnym, tzn. z zakładowymi Stacjami Doświadczalnymi w Łowiczu, Rzeszowie, Tymbarku, Tarnowie, i Włocławku. Zakład sprawował nadzór merytoryczny nad działalnością tych stacji i uczestniczył w opracowywaniu niektórych zagadnień i technologii nowych produktów.

W latach 50. i 60. Zakład koordynował również prace dotyczące określania przydatności technologicznej odmian owoców i warzyw, współpracując
z wieloma placówkami, zajmującymi się problematyką surowcową (m.in. In-
ytut Warzywnictwa, Instytut Sadownictwa, Instytut Hodowli i Aklimatyzacji
Roślin, specjalistyczne zakłady i katedry wyższych uczelni).

Waźnym obszarem działalności zakładu, rozwijanym od wczesnych lat 60.
była technologia soków owocowych i warzywnych. Efektem wielu lat badań
Prowadzonych w ścisłej współpracy z przemysłem, było wydanie w 1970 r.
zbioru instrukcji pt. „Soki i koncentraty z owoców i warzyw”. Praca ta obej-
mowała instrukcje dotyczące otrzymywania m.in. soków i koncentratów prze-
cierowych, soków zagęszczonych, soków pitnych, soków w proszku, granula-
tów sokowych i kondensatów aromatów owocowych. Waźnym osiągnięciem
azładu było opracowanie w latach 60. przez dr. hab. Eugeniusza Rembow-
skiego technologii otrzymywania kremogenów i soków przecierowych z owo-
ców i warzyw. Z tematyką sokowniczą ścisłe związane były prace nad wydzie-
leńiem, zatężeń i odwadnianiem aromatów z soków oraz opracowanie
metod produkcji aromatów na nośnikach. Inną ważną tematyką realizowana
w zakładzie były technologie produktów przeznaczonych dla niemowląt
dzieci, m.in. soków, przecierów, zup, kompotów, deserów, owoców w kre-
mach i kremów owocowych. Badania te były prowadzone we współpracy
Rzeszowskim ZPOW w Rzeszowie i Instytutem Matki i Dziecka w Warszawie.
Wysoko cenione przez odbiorców były również, opracowane w latach 90.,
produkty o obniżonej wartości energetycznej przeznaczone dla cukrzyków,
janger, napoje, marmolady i dżemy niskosłodzone, z dodatkiem zastęp-
czych środków słodzących, tj. sorbitol, aspartam, acesulfam K, fruktoza.
Opracowano również linie funkcjonalnych produktów owocowych, supple-
mentowanych w błonnik, wapń oraz prebiotyki: inulinę i fрукtooligosachary-
dy. Inną ciekawą grupą produktów stanowiły konserwy z udziałem roślin
strączkowych, m.in. grochu, fasoli, ciecierzycy i lędźwianu, projektowane
ako źródło białka dla wegetarian.

Prace w dziedzinie winiarstwa zaowocowały m.in. opracowaniami doty-
cyającymi technologii miodów pitnych, cydrów, koktajli, kordialów, napojów
winopodobnych i winopochodnych.

W ZO od lat 60., początki od pionierskich prac zespołu dr Lidii Kosew-
skiej, zajmowano się także fermentacją mlekką, opracowując warunki kon-
trolowanej fermentacji warzyw i soków warzywnych z zastosowaniem szcze-
pionek bakterii kwasu mlekkowego.

Znaczącą również, realizowaną od końca lat 60. tematyką działalności ba-
dawczej i usługowej zespołu składającego się z pracowników Pracowni Tech-
nologii Konserw, Pracowni Urządzeń i Pracowni Mikrobiologicznej, było cieplne utrwalanie konserw warzywnych, warzywno-mięsnych oraz owocowych i badanie procesu pasteryzacji i sterylizacji przez pomiar ewolucji temperatury wewnątrz opakowania. Powiązanie przewodnictwa cieplnego produktu, szczególnie o gęstej konsystencji, z ciepłoopornością drobnoustrojów umożliwiło weryfikację i opracowanie parametrów sterylizacji i pasteryzacji wielu rodzajów konserw w opakowaniach o różnej wielkości oraz wprowadzenie do praktyki pojęcia wartości sterylizacji F_0, będącej miarą skuteczności procesu cieplnego utrwalania konserw o pH powyżej 4,5.

Osiągnięcia pracowników zakładu zdobywały wiele nagród i wyróżnień. Do najważniejszych można zaliczyć:
- 1968 – Nagroda za Novit na Międzynarodowej Wystawie Żywności SIAL w Paryżu,
- 1969 – Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę: „Opracowanie i uruchomienie produkcji przetworów dla niemowląt”,
- Nagroda zespołowa Ministra Przemysłu Spożywczego i Skupu za pracę: „Opracowanie nowej technologii produkcji wysokojakościowej, sproszkowanej pektyny z wytłoków jabłkowych”,
- 1971 – Nagroda Zespołowa NOT I° – Mistrz Techniki – za pracę: „Opracowanie metody kondensacji aromatów owocowych”,
- Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę: „Opracowanie i uruchomienie produkcji przetworów dietetycznych”,
- 1978 – Nagroda za granulaty warzywne na Międzynarodowej Wystawie Żywności SIAL w Paryżu,
- 1979 i 1981 – Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę: „Opracowanie i wprowadzenie do produkcji zagęszczonych soków warzywnych i otrzymywanie z nich granulatów”,
- 1984 – II Nagroda Ministra Rolnictwa i Gospodarki Żywnościowej oraz dwa wyróżnienia w konkursie „Zwiększamy produkcję i spożycie białka z nasion grochu i fasoli” dla pięciu opracowanych produktów z roślin strączkowych,
- 1989 – Wyróżnienie za nowatorskie opracowania technologii nowych wyrobów spożywczych na Targach Zdrowej Żywności w Tarnowie,
- Nagroda zespołowa za pracę: „Opracowanie i wdrożenie do produkcji nowych korków klejonych (suberytowych) i zastosowanie do pakowania win Gronowych”.

105
W latach 90. przetwory produkowane wg technologii opracowanych w ZO uzyskały ponad 50 medali i wyróżnień a członkowie zespołów autorskich zostali uhonorowani nagrodami I stopnia ministra Rolnictwa i Gospodarki Żywnościowej: w 1993 r. za opracowanie i wdrożenie technologii napojów i dżemów o obniżonej wartości energetycznej słodzonych aspartamem, a w 1997 r. za opracowanie i wdrożenie technologii napojów izotonicznych.

Obecnie działalność naukowa Zakładu, realizowana w ramach prac statutowych i projektów badawczych obejmuje m.in. następujące obszary:
→ doskonalenie technik i technologii zapewniających poprawę jakości przetwórców owocowych i/lub warzywnych;
→ opracowywanie technologii przetworów owocowych i warzywnych o właściwościach prozdrowotnych i specjalnego żywieniowego przeznaczenia, tzw. żywności funkcjonalnej;
→ zastosowanie kierowanej fermentacji mlekowej do otrzymywania produktów spożywczycych z surowców roślinnych;
→ opracowywanie technologii produktów owocowych i warzywnych z surowców regionalnych i ekologicznych;
→ opracowywanie i wdrażanie metod badania jakości i autentyczności surowców, półproduktów i produktów przemysłu owocowo-warzywnego przy wykorzystaniu metod chemicznych, fizykochemicznych, enzymatycznych, mikrobiologicznych i sensorycznych; ustalanie kryteriów oceny oraz opracowywanie i adaptacja nowych metod analitycznych;
→ otrzymywanie i badanie naturalnych aromatów i barwników spożywczych.

Wiele prac badawczych realizowanych w ostatnim okresie dotyczy badania prozdrowotnych, a zwłaszcza przeciwutleniających właściwości produktów owocowo-warzywnych i ich modyfikacji w efekcie procesów przetwórczych. Szczególną uwagę zwrócono w tym aspekcie na polskie, mało znane lub znane a wciąż niedoceniane, owoce o dużym potencjał antyoksydacyjnym, stanowiące bogate źródło cennych dla zdrowia substancji, takie jak rokitnik, aronia, dereń, dzika róża czy czarny bez.

Rozwijanym stale obszarem badawczym jest zastosowanie wyselekcjonowanych z naturalnych źródeł bakterii kwasu mlekowego do otrzymywania kiszonych warzyw, owoców i grzybów. Osiągnięciem zespołu kierowanego przez dr inż. Lubomilę Owczarek było opracowanie, z myślą o coraz większej grupie konsumentów nie tolerujących mleka i przetworów mlecznych, za-
mienników jogurtów – fermentowanych napojów zbożowych i sojowych, zawierających cenne bakterie probiotyczne. Prace te zaowocowały trzema patentami oraz wdrożeniem, w ramach projektu UE, technologii fermentowanych napojów sojowych w Czechach.

Zainteresowania badawcze pracowników Zakładu obejmują również nowe technologie, o potencjale aplikacyjnym w przetwórstwie owocowo-warzywnym. We współpracy z Centrum Badań Wysokociśnieniowych PAN zrealizowano kilka projektów dotyczących możliwości zastosowania pasteryzacji wysokociśnieniowej (HPP) do poprawy jakości higienicznej przetworów owocowych (soków, nektarów, wyrobów żelowanych) oraz przypraw. Proszadzone są również badania nad możliwościami zastosowania innej innowacyjnej technologii – pasteryzacji mikrofalowej w przepływie.

Istotną sferą aktywności Zakładu jest działalność usługowa. Zakład współpracuje w wszystkimi największymi i wieloma średnimi i małymi producentami branży owocowo-warzywnej, sieciami handlowymi oraz państwowymi i prywatnymi laboratoriami kontrolnymi, badając jakość fizykochemiczną, mikrobiologiczną i sensoryczną półproduktów i produktów owocowych i warzywowych. Laboratoria ZO pracują zgodnie z systemem zarządzania wg normy PN-EN ISO/IEC 17025 a większość stosowanych metod analitycznych objętych jest zakresem akredytacji. Ścisła współpraca wiąże Zakład z najważniejszą organizacją branżową: Stowarzyszeniem Krajowa Unia Producentów Soków. Od początku istnienia KUPS pracownicy ZO uczestniczyli w działalności tej organizacji, mającej na celu uporządkowanie polskiego rynku soków i nektarów i dostosowanie go do wymagań Unii Europejskiej a po akcesji – nadzór na jakość produktów sokowych na polskim rynku w ramach Dobrowolnego Systemu Kontroli stworzonego przez Stowarzyszenie.

Wspomnieć należy również o zaangażowaniu pracowników zakładu, a zwłaszcza dr inż. Lubomiły Owczarek, w rozwijanie i wdrażanie systemów zarządzania bezpieczeństwem żywności w krajowych przedsiębiorstwach, najpierw w ramach utworzonego w Instytucie w 1999 r. Centrum Informacyjnego HACCP-IBPRS a następnie projektu szkoleniowego, finansowanego z funduszy strukturalnych UE, w ramach którego przeszkolono, w zakresie systemu zarządzania bezpieczeństwem żywności wg ISO 22000, 101 osób z kadry zarządzającej przedsiębiorstw branży spożywczej. Działania te, w okresie przed-akcesyjnym i po włączeniu Polski do Unii Europejskiej, wniosły duży wkład w dostosowywanie polskiego przemysłu owocowo-warzywnego do wymagań unijnych.
Tak jak przez całą swoją historię Zakład Technologii Przetworów Owocowych i Warzywnych również w przyszłości zamierza ukierunkowywać swoją działalność przede wszystkim na zaspokajanie potrzeb społecznych, związanych ze zdrowym żywieniem. Coraz większe zrozumienie roli właściwego żywienia w zdrowym i długim życiu, a w tym docenienie kluczowego znaczenia owoców, warzyw i produktów z nich otrzymanych w zrównoważonej diecie, pozwala przypuszczać, że zapotrzebowanie na badania prowadzone przez zakład nie powinno maleć. Ze względu na ogromny potencjał prozdrowotny produktów owocowych i warzywnych coraz bardziej widoczna staje się konieczność współpracy analityków i technologów żywności z medykami, dietetykami, czy przedstawicielami nowych, rozwijających się dziedzin nauki, takich jak nutrigenomika, i prowadzenia badań interdyscyplinarnych.

Odkrycie i rozpowszechnienie wiedzy o korzystnym oddziaływaniu pre- i probiotyków na funkcjonowanie układu trawiennego i całego organizmu stwarza również szerokie pole do działania mikrobiologów i biotechnologów zajmujących się fermentacją mlekovą surowców roślinnych. Owoce a zwłaszcza warzywa stanowią doskonałe środowisko dla wielu dobroczynnych drobnoustrojów o cechach probiotycznych i prace w tym kierunku mogą przynieść obiecujące rezultaty.

Działalność naukowa ZO prowadzona jest w ścisłej współpracy z przemysłem i jej celem jest podniesienie jego innowacyjności i konkurencyjności na globalnym rynku.

Rozwianą i doskonaloną formą działalności zakładu będzie z pewnością analityka, stanowiąca niezbędne narzędzie w pracach badawczych jak również, traktowana jako działalność usługowa, przynosząca nie tylko wymierne korzyści materialne ale również umożliwiająca nawiązanie i podtrzymanie ścisłych kontaktów z producentami i rozpoznanie potrzeb i wyzwań współczesnego przetwórstwa.

Możliwości, jakie daje otwarcie się na europejską przestrzeń badawczą, poprzez udział w Programach Ramowych Unii Europejskiej, korzystanie ze strumienia finansowania płynącego z dotacji unijnych i uczestnictwo w konkursach Narodowego Centrum Nauki i Narodowego Centrum Badań i Rozwoju oraz ścisła współpraca z przemysłem, stwarzają perspektywy pozyskiwania funduszy na kontynuację działalności naukowej i dalszy rozwój zakładu.
Zakład Technologii Przetworów Owocowych i Warzywnych
Od lewej, góra: Grażyna Kalmus, Natalia Dobros, Marta Chotkiewicz, Agnieszka Dekowska, Aurelia Hałasińska, Urszula Jasińska, Zbigniew Stelmach, Anna Fabisiak, Karina Szymula, Janina Tońska, Jolanta Niezgoda, Janina Mazurkiewicz.
Dół: Joanna Danielczuk, Janusz Lipowski, Sylwia Skąpska, Barbara Sokołowska, Lubomiła Owczarek, Krystian Marszałek.
Nieobecna: Zdzisława Jendrzejczak
Zakład Technologii Piwa i Słodu i Żywności Prozdrowotnej

Kierownik
dr inż. Elżbieta Baca

Zakres działalności Zakładu od roku 1954 do roku 1989 obejmował długoterminowe, planowane z roku na rok prace badawczo-rozwojowe z dziedziny piwowarstwa, słodownictwa, chmielarstwa i oceny surowców, a ponadto prace drobne, analizy, ekspertyzy i szkolenia pracowników browarów w zakresie kontroli analitycznej, mikrobiologicznej i oceny organoleptycznej, wykonywane na zlecenie odbiorców, głównie zakładów przemysłu piwowarskiego-słodowniczego.

Założycielem Zakładu, jego pierwszym kierownikiem, długoletnim opiekunem i inspiratorem prac badawczych był prof. dr hab. Tadeusz Gołębiewski. Do znaczących kierunków badań prowadzonych od 1954 należą m.in.:
→ opracowanie technologii produkcji piwa eksportowego w Browarze w Żywcu pod kątem poprawy stabilności koloidalnej oraz doskonalenia metod i technik filtracji piwa (prof. dr hab. T. Gołębiewski, dr inż. B. Sielicka),
→ intensyfikacja i modernizacja procesu fermentacji i dojrzewania piwa, opracowanie ciągłej technologii fermentacji i dojrzewania piwa w skali technicznej w browarze w Krakowie i Tychach i opracowanie ciśnieniowej technologii fermentacji, a także technologii fermentacji i leżakowania piwa w tankach cylindryczno-stożkowych, zainstalowanych w Browarze w Częstochowie (mgr inż. J. Chrostowski, mgr inż. W. Komornicka),
→ modernizacja warzelni i racjonalizacja gospodarki energetycznej browarów i słodowni (T. Mozga, doc. W. Dylkowski),
→ wieloletnie badania nad cechami sensorycznymi piwa i metodami ich oceny (prof. dr hab. A. Brudzyński, dr inż. K. Baranowski),
→ zastosowanie kultur bakterii mlekowych lub kwasu nadoctowego jako czynnika intensyfikującego proces słodowania, a także poprawy jakości słodu i brzeczki, opracowanie nowoczesnych metod oceny jakości drożdży nastawnych w aktualnych warunkach i ich przydatności do produkcji piwa, opracowanie metod utylizacji odpadów przemysłu piwowarskiego (dr inż. E. Baca).

Od początku istnienia w Zakładzie prowadzono badania i prace wdrożeniowe nad surowcami do produkcji piwa:
→ poprawa jakości wody technologicznej w browarach w Polsce (doc dr. W. Dylkowski, dr inż. B. Sielicka),
→ badanie przydatności odmian jęczmienia browarnego (prof. dr hab. T. Gołębiewski, mgr inż. E. Trzebuchowska),
→ opracowanie metody otrzymywania alkoholowych ekstraktów chmielowych (prof. dr hab. T Gołębiewski, dr inż. Ł. Dubiel) (praca zakończona wdrożeniem etanolowej metody ekstrakcji chmielu w ekstraktowni chmielu Chmiel Polski w Lublinie)
→ opracowanie metody unieszkodliwiania odpadów i ścieków w browarze w Żywcu i Okocimiu (prof. dr hab. T. Wolski, mgr inż. W. Komornicka),

Zakład Technologii Piwa i Słodu po gruntowym remoncie w roku 2001 był sukcesywnie wyposażany w nowoczesną aparatrę naukowo-badawczą oraz sprzęt pomiarowy, pozwalające sprostać aktualnym zadaniom na poziomie współczesnej nauki i techniki. Wśród nowo zakupionej aparatury Zakładu godne uwagi są zwłaszcza:

→ chromatografy gazowe: f-my Hewlett-Packard z przystawką do analiz Headspace oraz f-my Agllent Technologies (dawny Hewlett Packard) z spektrometrem masowym, przystosowane do badania olejków chmielowych w chmielu i jego produktach, brzeczce i piwie oraz składników aromatycznych w brzeczce i piwie, a także w innych produktach spożywczych i napojach (aldehydów, estrów, ketonów, alkoholi wyższych) Dodatkowe wyposażenie chromatografu gazowego w detektor FPD umożliwia oznaczanie w słodzie, w brzeczce i w piwie związków siarkowych jak DMS i DMSO i inne,

→ chromatografy cieczowe HPLC: f-my Knauer i f-my Waters – sprzężony ze spektrometrem mas, wykorzystywane do oznaczania alfa i beta-kwasów oraz ich składników w chmielu i produktach chmielowych, a także do oznaczania substancji goryczkowych w brzeczce i piwie, do oznaczania w brzeczce i piwie cukrów, kwasów organicznych i składników polifenoli,

→ nowoczesny zestaw do oznaczania związków białkowych w zbóżach, słodzie, brzeczce i piwie,

→ aparat do pomiaru pienistości piwa NIBEM,

→ aparat do pomiaru zawartości tlenu w piwie, brzeczce i wodzie,

→ aparat do pomiaru zawartości dwutlenku węgla w piwie,

→ programowany termostat i specjalny zmętnieniomierz do przeprowadzania tzw. testów forsowania do określania przewidywanej trwałości koloidalnej piwa,

→ zestaw do konduktometrycznego miareczkowania do oznaczania wartości konduktometrycznej (alfa-kwasów) w chmielu jego produktach,

→ aparat do zacierania słodu i friabilimetru,

→ lepkościomierz Brokfielda,

→ spektrofotometr Beckmana.
Zakład Technologii Piwa, Słodu i Żywności Prozdrowotnej
Od lewej: Marcin Karaś, Elżbieta Baca, Krzysztof Baranowski, Anna Kapka, Agnieszka Salamon, Dorota Michałowska, Dorota Królikowska.
Nieobecni: Andrzej Brudzyński, Dorota Zielińska, Konstanty Ziętkiewicz, Teresa Kubuj
Zakład Technologii Piwa i Słodu po remoncie dysponuje od roku 2011 nowoczesną mikrotechniką do produkcji piwa, a także biopreparatu kultury starterowej *Geotrichum candidum*.

Posiada także urządzenia do prowadzenia doświadczalnej produkcji słodu (namaczania i kielkowania jęczmienia) z zautoatyzowaną suszarnią słodu włącznie.

Dzięki posiadaniu nowoczesnej aparatury badawczej Zakład od lat prowadzi rutynową ocenę przydatności jęczmienia, słodu, chmielu i produktów chmielowych do produkcji piwa, a także pełną ocenę piwa wykonując obok prac badawczych także wszelkostreowne usługi analityczne:

→ ocenę jakości surowców i półproduktów do produkcji piwa na podstawie badań fizyko-chemicznych, chromatograficznych i organoleptycznych,
→ ocenę jakości piwa na podstawie badań fizyko-chemicznych, chromatograficznych i organoleptycznych,
→ kontrolę czystości mikrobiologicznej kultur drobnoustrojów oraz surowców i produktów w przemyśle piwowarskim,
→ likwidację zakażeń linii produkcyjnych w browarach.

W latach 1995–2002 Zakład Technologii Piwa i Słodu zrealizował następujące projekty badawcze:

→ przemiany składników aromatu chmielowego w procesie otrzymywania piwa bezalkoholowego (prof. dr hab. A. Brudzyński, dr inż. K. Baranowski, mgr inż. M. Rybicka),
→ opracowanie wskaźnika jakości aromatu chmielowego dla chmielu oraz jego produktów – granulatów i ekstraktów (dr inż. K. Baranowski, prof. dr hab. A. Brudzyński, mgr inż. M. Rybicka),
→ zastosowanie szczepów drożdży nie fermentujących maltozy do otrzymywania piwa bezalkoholowego (dr inż. E. Baca, dr inż. K. Baranowski, prof. dr hab. A. Brudzyński, mgr inż. A. Salamon),
→ porównanie wpływu bakterii kwasu mlekowego i drożdży z rodzaju *Geotrichum* zastosowanych w procesie słodowania na jakość słodu browarskiego i brzeczki piwnej (mgr inż. D. Michałowska),
→ określenie wpływu składu substancji goryczkowych chmielu, granulatów i ekstraktów chmielowych na charakter i jakość goryczki w piwie (dr inż. K. Baranowski, dr inż. E. Baca, mgr inż. A. Salamon, mgr inż. D. Michałowska),
Z uwagi na rozszerzony zakres swojej działalności o zagadnienia związane z żywnością prozdrowotną, zakład zmienił w roku 2010 nazwę na Zakład Technologii Piwa, Słodu i Żywności Prozdrowotnej.

W wyniku współpracy z zakładami przemysłowymi w latach 2000–2010 zakończono i wdrożono następujące projekty celowe:

→ optymalizacja produkcji ekstraktów chmielowych na bazie etanolu, dr inż. K. Baranowski, dr inż. E. Baca, mgr inż. A. Salamon, tech. K. Ziętkiewicz (wdrożenie technologii produkcji ekstraktów etanolowych w nowo wybudowanej ekstraktowni w Powiśle Sp. jawna, Kępą Chotecką),

→ opracowanie i wdrożenie do produkcji biopreparatu kultury starterowej Geotrichum candidum, dr inż. E. Baca, mgr inż. D. Michałowska, mgr inż. A. Salamon, tech. K. Ziętkiewicz (Projekt własny IBPRS),

→ opracowanie i wdrożenie sposobu wytwarzania pieczywa prozdrowotnego, dr inż. E. Baca, mgr inż. D. Michałowska, mgr inż. A. Salamon, dr inż. K. Baranowski (Piekarnia Adam Gawarecki, Ciechanów),

→ opracowanie i wdrożenie technologii produkcji prozdrowotnych eksportowych miodów pitnych, dr inż. E. Baca, mgr inż. D. Zielińska, dr inż. K. Baranowski, mgr inż. M. Karaś (PPHU Agrokompleks Sp. jawna Wyborska & Wyborski, Polski Konopat),

→ opracowanie i wdrożenie technologii wytwarzania pieczywa prozdrowotnego wspomagającego profilaktykę i leczenie niedokrwistości z niedoboru żelaza, dr inż. E. Baca, dr inż. K. Baranowski, mgr inż. A. Kapka, mgr inż. D. Michałowska, mgr inż. M. Karaś (Piekarnia „KAPKA” B. i T. Kapka Sp. jawna, Tarnogród),

W latach 2000–2003 zrealizowano i wdrożono także projekty celowe w wyniku współpracy z małymi i średnimi przedsiębiorstwami:

→ opracowanie i uruchomienie produkcji piwa bezalkoholowego metodą biotechnologiczną, dr inż. E. Baca, dr inż. K. Baranowski, mgr inż. A. Salamon, tech. K. Ziętkiewicz (Browar Mazowiecki Sp. jawna M. Morawski, I. Piasecki, Okuniew),

115
→ opracowanie i uruchomienie produkcji kiszonek z odpadów przemysłu piwowarskiego, dr inż. E. Baca, mgr inż. A. Salamon (AGROKORN Sp. z o.o., Łowicz),

→ badanie przydatności do produkcji słodu nowych odmian jęczmienia,
→ badanie przydatności do produkcji piwa nowych odmian chmielu,
→ modyfikacja procesów technologicznych w browarach pod kątem poprawy jakości piwa, a w szczególności optymalizacja procesu zacierania i chmieleńia brzeczki oraz fermentacji i dojrzewania piwa,
→ doskonalenie szczepów drożdży piwowarskich,
→ doskonalenie techniki i technologii piwowarskich pod kątem lepszego, wykorzystania surowców i półproduktów, oszczędności energii i ochrony środowiska,
→ badania w zakresie wykorzystania produktów odpadowych,
→ badania w zakresie technologii produkcji żywności prozdrowotnej.

Istotną działalnością zakładu było dostosowanie procedur analitycznych surowców, półproduktów w piwowarstwie oraz piwa do wymogów międzynarodowych (EBC i MEBAK).

Zakład systematycznie prowadzi także szkolenia w zakresie sensoryki piwa (szkolenie degustatorów piwa I i II stopnia), mikrobiologii i analityki drożdży dla przemysłu piwowarskiego oraz metod analitycznych.
Obok w.w. zakresu badań, ZTPSiŻP będzie w przyszłości realizował prace badawcze związane z opracowaniem technologii produkcji nowych gatunków piwa, a także piw wzbogaconych w prozdrowotne składniki chmielu, prace nad zwiększeniem wartości odżywnej pieczywa, opracowaniem technologii produkcji pieczywa dla osób otyłych oraz opracowaniem technologii i techniki wytwarzania nowych prozdrowotnych produktów mleczarskich.
I. Rys historyczny

II. Ogólny zakres działalności

1. Działalność Zakładu w latach 1971–1987,
 pod kierunkiem dr. inż. Stanisława J. Kubackiego

Wytyczone nowatorskie wówczas kierunki działalności Zakładu obejmowały:
→ opracowanie i adaptację metod analitycznych z wykorzystaniem nowoczesnych technik pomiarowych,
→ prowadzenie badań żywności w zakresie obecności substancji szkodliwych dla zdrowia i dodatków do żywności,
→ koordynację działalności w problematyce pestycydowej w obrębie resortu przemysłu spożywczego i skupu,
→ śledzenie światowego postępu w zakresie chemii analitycznej i współpracę ze specjalistycznymi organizacjami międzynarodowymi oraz wiodącymi w tej dziedzinie ośrodkami badawczymi na świecie,
→ wykonywanie prac usługowo-badawczych i ekspertyz,
→ prowadzenie szkoleń w zakresie analizy instrumentalnej.

Do ich realizacji zastosowane były następujące techniki:
→ chromatografia gazowa (z detektorami FID, ECD) – do analizy kwasów tłuszczowych, steroli, cukrów, alkoholi, pestycydów, nitrozoamin,
→ chromatografia cieczowa wysokociśnieniowa – do analizy nielotnych nitrozoamin i mikotoksyn, policyklicznych węglowodorów aromatycznych, metyloaminokwasów,
→ chromatografia jonowymienna (automatyczny analizator aminokwasów) – do analizy aminokwasów,
→ spektrometria UV/VIS – do analizy azotanów i azotynów,
→ absorpcyjna spektrometria atomowa płomieniowa – do analizy pierwiastkowej.

Zakład ukształtowany został i funkcjonował w układzie 3 Pracowni i Zespołu Kierownika Zakładu. Skład zatrudnionych w poszczególnych Pracowniach pracowników ulegał w czasie zmianom, z największą liczbą pracowników zatrudnionych w 1980 r., wynoszącą 23 osoby.
→ Pracownia Badania Pozostałości Pestycydów, kierowana przez mgr inż. Teresę Lipowską, zajmującą się głównie problematyką pestycydową, ale również niektórymi mikotoksynami, jak patulina, a także azotanami i azotyna-
mi. Pozostali pracownicy m.in.: inż. Barbara Danielewska, inż. Halina Goszcz, dr Maria Zbieć, Danuta Tomaszewska (Marciniak).

→ Pracownia Analizy Aminokwasów kierowana przez dr Wandę Kubacką, która zajmowała się badaniami dotyczącymi kwasów tłuszczowych, aminokwasów, niektórych kwasów z cyklu Krebsa oraz N-nitrozozwiązków. Pozostali pracownicy m.in.: mgr Krystyna Grabowska (Szymczyk), Irena Pułała, Anna Kulik, Zofia Gruszczyńska.

Badania dot. problematyki pestycydowej

Zaadaptowano i wprowadzono do praktyki laboratoryjnej wiele metod analitycznych oznaczania pozostałości pestycydów głównie z grupy związków chloroorganicznych, fosforoorganicznych i karbaminianowych w różnych surowcach i produktach spożywczych z wykorzystaniem techniki GC z różnymi detektormi selektywnymi (ECD, NPD, FPD). Opracowane metody były sukcesywnie wprowadzane w 6 Rejonowych Pracowniach Pestycydowych tworzących sieć kontrolną produktów przemysłu spożywczego, w tym mięsnych, drobiarskich, mlecznych i przeznaczonych dla dzieci. Zostały one utworzone decyzją Ministra Przemysłu Spożywczego w 1971 r., a opiekę merytoryczną powierzono Zakładowi Analizy Instrumentalnej. Rocznie analizowano ok. 10 000 próbek, a wyniki opracowywano kwartalnie w postaci sprawozdańia i wraz z wnioskami przekazywano do Ministerstwa Przemysłu Spożywczego i Skupu. Corocznie dla uczestniczących laboratoriów, prowadzono badania międzylaboratoryjne dla zapewnienia jakości wyników badań. Po roku 1980 liczba rejonowych Pracowni Pestycydowych ograniczona została do czterech, a w 1988 r. zostały całkowicie rozwiązane.
Prowadzono również badania wpływu procesów technologicznych na zawartości pestycydów chloro- i fosforoorganicznych w produktach spożywczych, tj. konserwy mięsne i kielbasy, oleje jadalne, piwo i kremogeny owocowe. Stwierdzono m.in., że pestycydy chloroorganiczne całkowicie są usuwane w trakcie rafinacji olejów jadalnych, a także w znacznym stopniu przy produkcji kremogenów, stanowiących półprodukt do produkcji przetworów dla dzieci. Uzyskane wyniki doprowadziły do zorganizowania systematycznej kontroli, zapewniającej bezpestycydową (w granicach wykrywalności stosowanych metod) produkcję przetworów dla dzieci.

Badania dot. problematyki nitroazoaminowej

Prowadzone na zlecenie i we współpracy z Instytutem Przemysłu Mięsnego i Tłuszczowego oraz Ośrodkiem Badawczo-Rozwojowym Drobiarstwa badania związane były przede wszystkim z ograniczeniem zawartości azotanów i azotynów w technologii peklowania mięsa, które mogą przekształcać się w rakotwórcze N-nitroazoaminy. Opracowano metody oznaczania lotnych N-nitrozoamin (N-nitrozodwuetylamin, N-nitrozodwumetyloaminy, N-nitrozopirolidyny i N-nitrozopiperperydyeny) w przetworach z mięsa peklowanego oraz peklowanych produktach drobiarskich, które z pozytywnym rezultatem sprawdzono w badaniach międzylaboratoryjnych i które umieszczone zostały w zbiorze metod rekomendowanych przez Międzynarodową Agencję Badań nad Rakiem (IARC). Ocena występowania lotnych N-nitrozozwiązków w szynkach pasteryzowanych i różnych asortymentach produktów z peklowanego mięsa drobiowego doprowadziła do zmian technologicznych (składu solanki peklującej) i ograniczenia ryzyka powstawania tych związków.

Badania lotnych N-nitrozoamin w przetworach owocowo-warzywnych przeznaczonych do spożycia przez dzieci i produkowanych przez Rzeszowskie Zakłady Przemysłu Owocowo-Warzywnego nie wykazały obecności tych związków.

Równocześnie prowadzono kompleksowe badania nad powstaniem N-nitrozoaminokwasów oraz N-nitrozodipeptydów, mechanizmem reakcji, kinetyką, właściwościami chemicznymi oraz biologicznymi (W. Kubacka, S.J. Kubacki). Stwierdzono, że pochodne N-nitrozowe dipeptydów z proliną na N-końcu tworzą się relatywnie łatwo i wykazują silne właściwości toksyczne. Związki te syntetyzowano po raz pierwszy, co w konsekwencji wzbogaciło wiedzę z tego zakresu.

Badania dot. problematyki mikotoksynowej

Z ważniejszych prac wykonywanych w tym zakresie była ocena krajowych zbóż na zawartość aflatoksyn (inż. Halina Goszcz), zaliczanych do związków o udowodnionym działaniu rakotwórczym, przy czym w żadnej ze zbadanych wówczas próbek nie stwierdzono obecności tych związków.

Zaadaptowano również metodę oznaczania patuliny w sokach jabłkowych chemicznej HPLC, wprowadzając szereg istotnych modyfikacji, w tym zastąpiono niebezpieczny dla zdrowia ludzkiego benzen toluenem oraz wprowadzono kalibrację roztworem wzorcowym w miejsce standardu wewnętrznego. Zmodyfikowana metoda została poddana badaniom międzylaboratoryjnym organizowanym przez IUPAC i ISO. Z wykorzystaniem tej metody dokonano oceny jakości zagęszczonych soków jabłkowych produkcji krajowej, a także zbadano wpływ procesów technologicznych, takich jak zagęszczanie, pasteryzacja, fermentacja alkoholowa na poziom zawartości w nich patuliny.

Badania nad metodami oznaczania i występowania benzo(a)pirenu

Prace nad występowaniem i metodami oznaczania benzo(a)pirenu (BaP), związku uznanego za głównego reprezentanta grupy policyklicznych węglowodorów aromatycznych (WWA) o działaniu rakotwórczym, dotyczyły modyfikacji spektrofotometrycznej metody oznaczania, umożliwiającej zmniejszenie pracochłonności i zwiększenie dokładności. Metoda ta została sprawdzona w badaniach międzylaboratoryjnych i następnie wykorzystana w pracach dla przemysłu zbożowo-młynarskiego odnośnie do stopnia skażenia zbóż BaP w procesie suszenia bezprzeponowego. Uzyskane wyniki wykazały, że suszenie zbóż w suszarniach polskiej konstrukcji – model DSP-32, nie powodowało wzrostu zawartości BaP. Prowadzono również badania nad opracowaniem wieloskładnikowej metody oznaczania policyklicznych węglo-
Badania związane z oceną czystości produktu i substratów użytych do produkcji drożdży wykazały, że przyczyną występowania dużych ilości BaP w drożdżach był siarczan amonowy, stosowany jako składnik pożywek mineralnych dostarczanych do hodowli. Pochodził on z hut i koksoni, a wykazane jego duże zanieczyszczenie BaP, doprowadziło do jego wycofania i zastąpienia znacznie czystszej formą amonowym (nawozowym), produkowanym przez Zakłady Azotowe w Tarnowie i Puławach. W ramach realizacji programu rządowego PR-4 dokonano m.in. przeglądu zawartości BaP w produkcji krajowych drożdżach paszowych, który wykazał brak istotnego wpływu obecności BaP na wydajność drożdży i biomasy bakteryjnej. Badania nad bilansem zawartości BaP w hodowli przemysłowej jak i modelowych hodowlach laboratoryjnych wykazały, że znajdujący się w środowisku wzrostu drożdży benzo(a) piren, jest nieomal w całości przez nie kumulowany.

Badania nad azotynami i azotanami

Prowadzono badania nad występowaniem i zmianami zawartości azotanów i azotynów w procesie wytwarzania produktów dla dzieci na bazie marchwi i dyni, które doprowadziły do wprowadzenia zmian w procesie technologicznym i ograniczenia możliwości przemian azotanów w azotyny. Badania prowadzono we współpracy z Rejonową Pracownią Pestycydową i Stacją Doswiadczalną w Rzeszowie.

Badania nad metodami oznaczania i występowaniem metali

Od 1974 r. rozpoczęto badania nad zastosowaniem techniki płomieniowej AAS (absorpcyjna spektrometria atomowa) do opracowania i adaptacji metod analitycznych oznaczania metali szkodliwych dla zdrowia, takich jak: ołów, kadm, żelazo, miedź, cynk i cyna w wybranych przetworach owocowo-warzywnych (B. Kędzierski). W wyniku prowadzonych prac, opracowano metodę pozwalającą na bezpośrednie (tzn. bez mineralizacji) oznaczanie stężenia metali w płynnych produktach spożywcych. Jednocześnie prowadzono badania nad opracowaniem metod oznaczania metali w innych grupach wyrobów przemysłu owocowo-warzywnego oraz w piwach.
Kontynuowane przez B. Szteke badania metodyczne doprowadziły do opracowania lub adaptacji wielu metod analitycznych, które pozwalały na oznaczanie zawartości metali niezbędnych dla człowieka (np. magnezu, potasu, miedzi w zieleni leczniczej i przyprawowych) jak i metali szkodliwych dla zdrowia lub pogarszających jakość żywności (metale ciężkie w przetworach owocowo-warzywnych, konserwach warzywno-mięsnych, słoninie konserwowej oraz innych produktach spożywczych, żelazo i arsen w piwie).

Prowadzone w latach 1982–1987 badania związane z występowaniem kadmio i ołowiu w żywności przeznaczonej dla małych dzieci wykazały obecność tych metali w surowcach i gotowych produktach w ilościach przekraczających proponowane przez Ministerstwo Zdrowia i Opieki Społecznej dopuszczalne ich zawartości (R. Jędrzejczak). Badania surowców z kilkuset plantacji towarowych z uwzględnieniem uwarunkowań rolniczych (nawożenie, ochrona pestycydowa), środowiskowych (warunki glebowe, pogodowe) i technologicznych doprowadziły do określenia przyczyn tego stanu i zmniejszenia zawartości kadmio w przetworach dla niemowląt i małych dzieci. Praca uzyskała wyróżnienie Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej w 1988 r.

Badania nad metodami oznaczania oraz składem kwasów tłuszczowych

Zakład posiadał już duży dorobek związany z analityką kwasów tłuszczowych jeszcze przed powstaniem Zakładu dzięki pracownikom Pracowni Chromatografii Gazowej byłego Instytutu Przemysłu Tłuszczowego, którą kierował dr inż. Piotr Krasnodębski. Badania w tym zakresie były kontynuowane od początku powstania Zakładu i wiązały się z pracami prowadzonymi przez Instytut Hodowli i Aklimatyzacji Roślin nad hodowlą odmian rzepaku o niskiej zawartości kwasu erukowego oraz potrzebami przemysłu olejarskiego w zakresie kontroli jakości surowców i produktów.

Zrealizowano również cykl badań doskonalących metodę oznaczania składu kwasów tłuszczowych w olejach i tłuszczach pochodzenia roślinnego (ekstrakcja, katalizatory, wypełnienie kolumn chromatograficznych).

Zakład corocznie brał udział w akcji pod nazwą „kampania rzepakowa”, w trakcie której wykonywano kilka tysięcy oznaczeń zawartości kwasu erukowego w rzepaku w krótkim okresie pomiędzy zbiorem i wysiewem. Dzięki temu możliwe było wykonanie przez Instytut Hodowli i Aklimatyzacji Roślin w Poznaniu doświadczeń hodowlanych nad otrzymaniem odmian niskoerukowych.
Badania nad oznaczaniem oraz składem aminokwasów

Zakład był jedną z pierwszych jednostek naukowych w resorcie, który zajął się tą tematyką. Zasadnicze kierunki prac w tym zakresie dotyczyły opracowania i adaptacji metod analitycznych oznaczania i oceny składu aminokwasowego w surowcach i produktach mikrobiologicznej syntezy białka. Wyniki wykorzystywane zostały do oceny wartości żywieniowej oraz śledzenia przebiegu procesów technologicznych w celu ich optymalizowania.

Efektem prowadzonych badań było opracowanie metody oznaczania pełnego składu aminokwasowego metodą chromatografii jonowymiennej, aminokwasów białkowych oraz lizyny metodą chromatografii gazowej, tryptofanu – metodą kolorymetryczną.

Opracowane metody oznaczania aminokwasów znalazły zastosowanie przede wszystkim w optymalizowaniu technologii zdrożdżowania melasu oraz wywaru melasowego, soku z traw, odcieku z drożdżowni oraz wycierki ziemniaczanej. Ponadto zastosowane były do oceny składu posiłków regeneracyjnych i dietetycznych oraz w pracach technologicznych z zakresu piwowarstwa, przemysłu owocowo-warzywnego, mięsnego i wielu innych. Szybka metoda oznaczania lizyny umożliwiła wykonanie rozpoznania odnośnie do selekcji szczepów bakterii lizynotwórczych, a metoda chromatografii gazowej wykorzystywana była w badaniach nad sposobami podwyższania zawartości lizyny i metioniny w drożdżach paszowych.

Badania nad metodami oznaczania węglowodanów

Opracowane metody oznaczania węglowodanów znalazły również zastosowanie w pracach technologicznych zakładów związanych z przemysłami
fermentacyjnymi: piwowarskim, enzymatycznym i drożdżowym, m.in. w badaniach nad opracowaniem sposobu scukrzenia wycierki ziemniaczanej przy użyciu enzymów celulolitycznych oraz otrzymywaniem i oceną aktywności izomerazy glukozowej.

Inne prace badawcze

→ Opracowano metodę oznaczania kwasu cytrynowego i izocytrynowego w płynach fermentacyjnych techniką GC (W. Kubacka), w związku z prowadzonymi w Instytucie pracami nad biosyntezą kwasu cytrynowego.

→ Opracowano metodę oznaczania metanolu w brzeczce fermentacyjnej techniką GC (J. Beer) oraz konstruowano urządzenie do periodycznego pomiaru stężenia metanolu w powietrzu odlotowym z fermentora, w ramach realizowanego w Instytucie Programu Rządowego PR-4 m.in. nad opracowaniem technologii hodowania biomasy bakteryjnej przy wykorzystaniu metanolu jako źródła węgla.

→ Przeprowadzono badania przechowalnicze kawy palonej z wykorzystaniem różnego rodzaju opakowań (J. Beer), w wyniku których stwierdzono, że pełne walory smakowo-zapachowe kawy palonej najdłużej (do 14–15 tygodni) zachowywane są w opakowaniach złożonych z trzech warstw: folia aluminiowa, papier, diopan. Wykazano również że w trakcie przechowywania wzrasta wilgotność kawy, kwasowość i liczba oksydacyjna.

→ Przeprowadzono badania nad związkami zapachowymi powstającymi w procesie fermentacji tytoniu oraz nad sposobami ich usuwania. Stwierdzono, że największej związków o przykrym zapachu zawartych jest w komorze fermentacyjnej w okresie końcowym tego procesu. W celu ich likwidacji, zaprojektowano urządzenie składające się z filtru z węgla aktywnego i wytwornicy ozonu, którego skuteczność sprawdzono w praktyce przemysłowej.

Sterowanie jakością

Dokonana ocena wskazała na konieczność zmian w istniejącym systemie budowy norm jakościowych oraz w wymaganiach jakościowych w kierunku właściwego zabezpieczania jakości produktów, ze szczególnym uwzględnieniem zachowania ich tożsamości. Wskazano również na konieczność dostosowania wymagań krajowych do norm międzynarodowych.

Struktura Zakładu w latach 1987–2006 obejmowała 3 Pracownie, a liczba zatrudnionych pracowników w tym czasie wahala się od 21 do 16.

W tym okresie Zakład dynamicznie się rozwijał w początkowym okresie kontynuując w podstawowych obszarach dotychczasową tematykę badań, ale przede wszystkim rozszerzając działalność o nowe zagadnienia ściśle powiązane z potrzebami gospodarki żywnościowej i bezpieczeństwem żywności. Niektóre z zagadnień związanych z nitrozoaminami, benzo(a)pirenem, węglowodorami, aminokwasami i sterowaniem jakością nie były kontynuowane.
Opracowanie, adaptacja metod do oceny jakości i bezpieczeństwa żywności

→ Opracowano procedurę oznaczania ochratoksyny A w kawie, przyprawach kulinarnych i owocach suszonych (L. Czerwiecki, G. Wilczyńska).
→ Zaadaptowano metodę oznaczania zearalenonu (ZEA) w zbożach i produktach zbożowych techniką HPLC z detekcją fluorymetryczną i oczyszczaniem na kolumniach powinowactwa immunologicznego (L. Czerwiecki, G. Wilczyńska).
→ Określono warunki ekstrakcji i detekcji aflatoksyn B₁, B₂, G₁ i G₂ w produktach roślinnych z zastosowaniem postkolumnowego tworzenia pochodnych z bromem w ogniwie KOBRA Cell (L. Czerwiecki, G. Wilczyńska).
→ Opracowano procedurę oznaczania pestycydów benzoimidazolowych w produktach roślinnych techniką HPLC/UV (K. Szymczyk).
→ Opracowano procedurę oznaczania wybranych herbicydów stosowanych w ochronie upraw owoców i warzyw techniką HPLC/UV (K. Szymczyk).
→ Opracowano procedurę oznaczania pozostałości wybranych pestycydów w żywności pochodzenia roślinnego techniką GC/MS na poziomach wartości limitowanych (M. Malczewska).
→ Opracowano procedury oznaczania selenu, fosforu, chromu, arsenu, cyny w żywności pochodzenia roślinnego techniką ETAAS (R. Jędrzejczak, W. Ręczajska).
→ Opracowano procedury oznaczania witaminy C i B₆ w surowcach oraz produktach spożywczych techniką HPLC (L. Czerwiecki).
→ Opracowano procedurę jednoczesnego oznaczania kwasu winowego i cytrynowego w winach gronowych i owocowych oraz napojach owocowych techniką HPLC pozwalającą na badanie autentyczności tych wyrobów (H. Giryn, B. Szteke).
→ Opracowano procedurę analityczną oznaczania alternariotoksyn (H. Giryn).
→ Opracowano procedurę analityczną oznaczania cyklimianinów i neoheesperydyny DC w napojach bezalkoholowych (H. Giryn).

W wyniku wieloletnich prac nad rozwojem i doskonaleniem metod oznaczania zanieczyszczeń chemicznych i biologicznych żywności, a także substancji odżywczych, opracowane, zaadaptowane metody ich oznaczania z wykorzystaniem nowoczesnych technik instrumentalnych zostały akredytowane przez Polskie Centrum Akredytacji (AB Nr 452) w latach 2004–2007 i obejmują oznaczenie w artykułach żywnościowych:
mikotoksyn takich jak: patulina, ochratoksyna A, aflatoksyna B₁ i suma aflatoksyn B₁ + B₂ + G₁ + G₂, z wykorzystaniem techniki HPLC w układzie z różnymi detektorami (FLD, UV),

- pozostałości pestycydów z grupy fungicydów z wykorzystaniem techniki chromatografii gazowej z detekcją MS,

- metali As, Ca, Cd, Fe, Hg, K, Mg, Na, Pb, Zn z wykorzystaniem techniki absorpcyjnej spektrometrii atomowej płomieniowej / z atomizacją elektrotermiczną / techniką generacji wodorków / techniką zimnych par,

- azotanów w owocach, warzywach i ich przetworach metodą kolorymetryczną.

Identyfikacja zanieczyszczeń chemicznych i biologicznych oraz ocena jakości żywności

Badania związane z wykrywaniem i oznaczaniem składników naturalnych oraz zanieczyszczeń (środowiskowych, technologicznych) w surowcach oraz przetworach spożywczych i wykazały, że:

- źródłem żelaza i manganu w diecie mogą być: ziarno zbóż, nasiona roślin oleistych (pestki słonecznika i dyni, siemię lniane) i orzechy, natomiast nie mogą nim być owoce i warzywa zawierające małe ilości tych pierwiastków; badania nad występowaniem żelaza i manganu w surowcach i produktach spożywczych pochodzenia roślinnego prowadzono w związku z występującym niedoborem głównie żelaza u ludzi. (R. Jędrzejczak, W. Ręczajska),

- większość badanych soków winogronowych i win gronowych skażona była ochratoksyną A, a jej najwyższe zawartości stwierdzono w winach francuskich, włoskich i niemieckich (L. Czerwiecki),

- skażenie zbóż polskich i słowackich grzybami oraz deoksyniwalenolem (DON) i ochratoksyną A (OTA) było małe; nie stwierdzono zależności pośród poziomem porażenia zbóż grzybami, a stopniem skażenia badanymi mikotoksynami (L. Czerwiecki, G. Wilczyńska),

- 75% analizowanych soków jabłkowych (754 próbki) dostępnych na rynku krajowym nie zawierała patuliny; obecność patuliny powyżej dopuszczalnej zawartości wynoszącej 50 μg/kg stwierdzono jedynie w 2 próbkach (1%) (K. Szymczyk),

- stosowanie nieodpowiedniej jakości owoców i warzyw zawierających alternariotoksyny może być przyczyną skażenia gotowych produktów owocowo-warzywnych,

- soki z aronii i czarnych porzeczek stanowią dobre źródło związków flavonoidowych w diecie (H. Giryn).
STO LAT Instytutu

Realizowano w tym okresie projekty badawcze finansowane przez MNiSW:
→ **Alternariotoksyny w żywności pochodzenia roślinnego**, 1995–1996, (5 P06G 033 09), B. Szteke (promotorski H. Giryn),
→ **Studia nad założeniami do polityki wyżywienia w Polsce**, 1995–1997 (PBZ-66–02), B. Szteke,
→ **Badania nad wytwarzaniem ochratoksyny A przez mikroflorę ziarna zbóż z upraw konwencjonalnych i ekologicznych**, 1998–2000, (5 P06G 019 14), Czerwiecki,
→ **Wpływ odmiany oraz procesów technologicznych na zawartość kwasów organicznych w sokach i zagęszczonych sokach jabłkowych**, 1999–2001 (5 P06G 021 17), H. Giryn,
→ **Studia nad doskonaleniem i wykorzystaniem metod chromatograficznych do analizy pozostałości środków ochrony roślin w żywności pochodzenia roślinnego**, 1995–1996, (5 P06G 019 14), B. Szteke (promotorski K. Szymczyk),
→ **Badania wzajemnego wpływu makroelementów i metali ciężkich na ich zawartość w wybranych roślinach jadalnych**, 2000–2001 (6 P06G 037 20), B. Szteke.

Badania monitoringowe jakości gleb, roślin, produktów rolniczych i spożywczych

Uzyskiwane wyniki badań, corocznie wykrywały incydentalne przypadki przekroczeń dopuszczalnej zawartości zanieczyszczeń (chemicznych, biologicznych) w stosunku do obowiązujących przepisów krajowych i międzynarodowych. Chociaż nie stanowiły one w sferze globalnej zagrożenia dla zdrowia społeczeństwa, to wskazywały jednak na kierunki potrzebnej profilaktyki we wskazanych potencjalnych punktach zagrożeń.
Analiza ryzyka wystąpienia substancji skażających w ziarnie zbóż objętych interwencyjnym zakupem w ramach WPR

W związku z obowiązującym Rozporządzeniem Komisji (WE) nakładającym na państwa członkowskie Unii Europejskiej obowiązek przeprowadzenia analizy ryzyka wystąpienia substancji niepożądanych w ziarnie zbóż przejmowanych w ramach systemu interwencji, przeprowadzono badania skażenia pszenicy ze zbiorów 2005–2006 we współpracy z Zakładem Przetwórstwa Zbóż i Piekarstwa.

Analiza ryzyka wystąpienia substancji skażających w ziarnie pszenicy w 2005 r. i 2006 r. była przeprowadzona w oparciu o opracowane w Instytucie zasady i wykazała w niektórych województwach wysokie ryzyko skażenia pszenicy kadmem, średnie ryzyko skażenia deoksyniwalenolem (DON) i ołowiem, natomiast niskie – aflatoksynami, ochratoksyną A, zearalenonem (ZEA), pozostałościami pestycydów i poziomem radioaktywności.

Modernizacja laboratorium analizy żywności w celu dostosowania do wymogów UE

W ramach Sektorowego Programu Operacyjnego – Wzrost konkurencyjności przedsiębiorstw (SPO-WKP), realizowano w latach 2004–2006 projekt inwestycyjny związany z modernizacją Zakładu Analizy Żywności (B. Szteke). Przesłanką było rozszerzenie i udoskonalenie oferty Instytutu Biotechnologii Przemysłu Rolno-Spożywczego w zakresie wykrywania i analizy zawartości zanieczyszczeń, substancji obcych oraz składników surowców i produktów przemysłu rolno-spożywczego. W ramach realizacji tego projektu dokonano zakupu nowoczesnej aparatury analitycznej, takiej jak: HPLC z detektorem DAD, HPLC z detektorem FL oraz urządzenie KOBRA, chromatograf LC/MS/MS oraz chromatograf GC/MS/MS, a także przeprowadzono modernizację pomieszczeń.
3. Działalność Zakładu w latach 2007–2011,
pod kierunkiem dr hab. inż. Renaty Jędrzejczak

Podstawowa działalność Zakładu na przestrzeni lat nie uległa zasadniczym zmianom, lecz pewnym modyfikacjom dostosowanym do aktualnych potrzeb w zakresie analityki żywności i obejmuje:

Rozwój metod analitycznych do oceny jakości i bezpieczeństwa żywności
→ Opracowano procedurę oznaczania sumy karotenoidów, β-karotenu i likopenu w produktach spożywczych (K. Szymczyk, H. Giryn).
→ Opracowano procedury oznaczania kwasu mlekowego i fumarowego oraz galakturonowego techniką HPLC jako wskaźników jakości soków z jabłek i owoców kolorowych.
→ Opracowano procedurę oznaczania wybranych mikotoksyn fuzaryjnych techniką LC/MS/MS (DON, ZEA, toksyny T-2 i HT-2).
→ Opracowano procedurę oznaczania zawartości fosforu w żywności pochodzenia roślinnego i preparatach witaminowo-mineralnych.
→ Opracowano wieloskładnikową procedurę oznaczania pozostałości pestycydów w surowcach i produktach spożywczych pochodzenia roślinnego techniką GC/MS/MS (K. Szymczyk, M. Roszko).
→ Opracowano procedurę oznaczania polichlorowanych bifenylów w ziarnie zbóż i produktach zbożowych techniką GC/MS/MS (K. Szymczyk, M. Roszko), a także wskaźnikowych i dioksynopodobnych polichlorowanych bifenylów w mleku i tłuszczu mlecznym (M. Roszko).
→ Opracowano i zweryfikowano metody oznaczania zawartości pierwiastków śladowych w suplementach diety z wykorzystaniem techniki FAAS i ETAAS (R. Jędrzejczak, W. Ręczajska).
→ Opracowano metodę oznaczania pojemności przeciwutleniającej w produktach pomidorowych metodą spektrofotometryczną (K. Szymczyk, R. Jędrzejczak).
W wyniku prowadzonych prac metodycznych niektóre opracowane procedury z wykorzystaniem nowoczesnych technik instrumentalnych zostały akredytowane przez Polskie Centrum Akredytacji (AB Nr 452) w latach 2007–2010 i obejmują oznaczanie w artykułach żywnościowych:

→ kwasów organicznych (mlekowego, fumarowego) w napojach, sokach i koncentratach jabłkowych z wykorzystaniem techniki HPLC z detekcją UV,

→ fosforu z wykorzystaniem techniki absorpcyjnej spektrometrii atomowej z atomizacją elektrotermiczną,

→ pozostałości pestycydów w surowcach i produktach spożywczych pochodzenia roślinnego techniką GC/MS/MS,

→ mikotoksyn fusaryjnych: zearalenon (ZEA), deoksyniwalenol (DON) z wykorzystaniem techniki HPLC w układzie z różnymi detektorami (fluorometrycznym, UV) i potwierdzaniem obecności mikotoksyn techniką LC/MS.

Identyfikacja zanieczyszczeń chemicznych i biologicznych oraz ocena jakości żywności

→ Badania składu mineralnego i ocena jakości preparatów witaminowo-mineralnych wykazała duże różnice w zawartościach poszczególnych pierwiastków przy czym pierwiastki toksyczne były na poziomie nie przekraczającym dopuszczalnych zawartości (NDZ), zawartość makroelementów była poniżej zalecanych dawek dziennych, zawartość mikroelementów mieściła się w zakresie zalecanych dawek dziennych, z wyjątkiem selenu, którego niekiedy wysoka zawartość w preparatach – zalecany poziom dziennego spożycia przekraczała.

→ Badania 7 wskaźników kongenerów PCB oraz 12 kongenerów o właściwościach analogicznych do dioksyn wykazały niskie ich stężenia w badanych produktach zbożowych, nie przekraczające 1 ng/g; w żadnej z badanych próbek nie został przekroczyony równoważnik toksyczności WHO-TEQ, wynoszący 0,4 pg.
Badania autentyczności (zafałszowań) żywności: wykrywanie dozwolonych i niedozwolonych substancji dodatkowych w żywności

Badaniami objęte są przetwory owocowo-warzywne w zakresie wyróżników jakościowych charakterystycznych dla zawartych składników (owoców, warzyw), takich jak: kwasy organiczne (fumarowy, mlekowy, galakturonowy), pierwiastki (P, Ca, Mg, K, Na), azotany. Ocena dokonywana jest w odniesieniu do przepisów prawnych oraz dokumentów technicznych: krajowych i Unii Europejskiej, w tym Kodeksu Praktyki AIJN. Badania prowadzone są głównie na zlecenie Stowarzyszenia Krajowej Unii Producentów Soków (KUPS) w ramach Dobrowolnego Systemu Kontroli soków i nektarów (DSK), powołanego w 2002 roku z inicjatywy producentów. Głównym celem DSK jest „zapewnienie autentyczności i bezpieczeństwa wyrobów sokowniczych dostarczanych konsumentowi”. Sporadycznie odnotowywane są przekroczenia ustalonych limitów wskazujące na możliwość zafałszowań soków owocowych dostępnych na rynku krajowym.

Opracowano technologię funkcjonalnych wyrobów pomidorowych o podwyższonej zawartości likopenu, która jest w trakcie wdrażania do produkcji. Zakres pracy obejmował: uprawy polowe i wytypowanie surowca o wysokiej zawartości likopenu, opracowanie receptur produktów o podwyższonej zawartości likopenu – soku i keczupu, badania wpływu procesu przetwórczego na zawartość likopenu oraz pojemność przeciwtleniającą produktów, badania wpływu podwyższonej zawartości likopenu na cechy sensoryczne i pojemność przeciwtleniającą produktów pomidorowych, badania przechowalnicze. Projekt jest obecnie w końcowej fazie realizacji.
Współpraca międzynarodowa

Od początku swojej działalności Zakład przywiązywał bardzo dużą uwagę współpracy z ośrodkami przodującymi w dziedzinie badania żywności, organizacjami międzynarodowymi oraz niektórymi producentami aparatury analitycznej.

III. Działalność usługowo-badawcza

Działalność usługowa w zakresie wykonywania analiz i ekspertyz jakości surowców i produktów spożywczych dla podmiotów gospodarczych na zlecenia MRiRW, przemysłu i dystrybutorów żywności. Rocznie analizowano ponad 1000 próbek różnych asortymentów surowców i produktów żywnościowych.

Działalność szkoleniowa

Zakład prowadzi działalność szkoleniową młodzieży ze szkół średnich i wyższych oraz staże dyplomowe oraz prace magisterskie. Od wielu lat systematycznie organizuje sympozja, konferencje, seminaria krajowe i międzynarodowe ukierunkowane na analizę śladową żywności i obecność zanieczyszczeń w żywności.

Łącznie zorganizowano 17 imprez naukowych (sympozja, konferencje, sesje, seminaria, szkoły), w tym 3 międzynarodowe.
IV. Osiągnięcia naukowe pracowników
Zakładu Analizy Żywności

Bezpośrednio prowadzone w Zakładzie Analizy Żywności prace naukowe i badawcze związane z występowaniem zanieczyszczeń chemicznych i biologicznych w żywności stały się podstawą następujących osiągnięć:

Stopnie i tytuły naukowe

Doktoraty
1996 – Hanna Giryn – doktor nauk rolniczych za pracę pt. „Alternariotoksyny w żywności pochodzenia roślinnego”, Akademia Rolniczo-Techniczna w Olsztynie (obecnie: Uniwersytet Warmińsko-Mazurski);
2001 – Krystyna Szymczyk – doktor nauk rolniczych w zakresie technologii żywności i żywienia za pracę pt. „Studia nad doskonaleniem i wykorzystaniem metod chromatograficznych do analizy pozostałości środków ochrony roślin w żywności pochodzenia roślinnego”, Uniwersytet Warmińsko-Mazurski w Olsztynie;
2011 – Marek Roszko – doktor nauk rolniczych w zakresie technologii żywności i żywienia za pracę pt. „Występowanie polichlorowanych bifenylów (PCB) oraz polibromowanych eterów difenylowych (PBDE) w tłuszczu mlecznym”, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie.
Zakład Analizy Żywności
Od lewej: Witt Wilczyński, Barbara Wolanin, Wiesława Ręczajska, Renata Jędrzejczak, Marek Roszko, Krystyna Szymczyk, Małgorzata Bogucka, Marcin Bryła
Habilitacje
1991 – Barbara Szteke – doktor habilitowany nauk medycznych na podstawie rozprawy „Studia nad wpływem środowiska uprawy na jakość zdrowotną żywności pochodzenia roślinnego”, Państwowy Zakład Higieny w Warszawie;
1993 – Ludwik Czerwiecki – doktor habilitowany nauk farmaceutycznych na podstawie rozprawy pt. „Mikotoksyny w żywności. Wykrywanie i oznaczanie”, Akademia Medyczna w Warszawie (obecnie: Warszawski Uniwersytet Medyczny);

Profesury
1997 – Barbara Szteke, profesor zwyczajny, Uniwersytet Warmińsko-Mazurski w Olsztynie.

Publikacje

Pracownicy naukowi Zakładu Analizy Żywności w latach 1975–2011 opublikowali w czasopismach krajowych i zagranicznych – łącznie 545 prac, w tym oryginalne publikacje naukowe, artykuły przeglądowe, monografie, komunikaty naukowe.

Nagrody i wyróżnienia

→ Wyróżnienie Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za „Rozpoznanie problemu zanieczyszczenia kadmem przetworów dla dzieci i wskazanie kierunków obniżenia poziomu tego zanieczyszczenia”, 1988,
→ Nagroda I stopnia Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za udział w realizacji pracy „Opracowanie i wdrożenie technologii produkcji napojów izotonicznych”, Warszawa 1997.
V. Kierunki dalszego rozwoju

Na następne lata planowana jest kontynuacja i rozwój badań w zakresie oceny jakości i bezpieczeństwa żywności w odniesieniu do występowania zanieczyszczeń chemicznych i biologicznych. Prowadzone będą również prace w kierunku rozwoju metod analitycznych z wykorzystaniem nowoczesnych technik pomiarowych umożliwiające wykrywanie w żywności substancji o udowodnionym szkodliwym oraz pożytecznym działaniu. Planowane jest rozszerzenie współpracy z ośrodkami krajowymi i zagranicznymi.

→ Centralne Laboratorium Przemysłu Młynarskiego (CLPM),
→ Centralne Laboratorium „PZZ” – pracujące na rzecz ówczesnych rejonowych zakładów zbożowych.

Do głównych zadań obu placówek należała w tym czasie unifikacja aparatury i metod badania jakości, organizacja służby kontroli jakości w przemyśle,
klasyfikacja surowca oraz ujednolicenie mieszanek przemialowych i gotowych produktów. Jednocześnie prowadzono badania w zakresie racjonalnego przetworywania ziarna zbóż oraz długookresowego składowania przetworów zbożowych.

O potrzebie i celowości utworzenia instytutu naukowo-badawczego przemysłu zbożowo-młynarskiego mówili już w pierwszych latach istnienia Polskich Zakładów Zbożowych prof. dr Józef Janicki i prof. dr Stanisław Jankowski. Ich starania oraz pomoc i poparcie ówczesnego wiceministra skupu, mgr Stanisława Gucwy oraz dyrekcji ówczesnych centralnych zarządów „PZZ” i przemysłu młynarskiego, przyczyniły się do powołania Instytutu Zbożowego specjalną uchwałą Rady Ministrów w styczniu 1956 roku. Podstawą do działania tej nowej instytucji był dorobek naukowy i kadra Centralnego Laboratorium Przemysłu Młynarskiego oraz Centralnego Laboratorium „PZZ”.

Zadaniem Instytutu było prowadzenie wszechstronnych prac naukowo-badawczych, mających na celu wprowadzanie postępu technicznego i organizacyjnego w przemyśle zbożowo-młynarskim. Prace te były kontynuowane przez Centralne Laboratorium Technologii Przetwórstwa i Przechowalnictwa Zbóż, które uchwałą Rady Ministrów powstało w 1958 roku z przekształcenia Instytutu Zbożowego.

Od 1992 roku siedziba Centralnego Laboratorium Technologii Przetwórstwa i Przechowalnictwa Zbóż znajdowała się w budynku Instytutu Biotechnologii Przemysłu Rolno-Spożywczego w Warszawie przy ulicy Rakowieckiej 36.

Prace realizowane w Centralnym Laboratorium Technologii Przetwórstwa i Przechowalnictwa Zbóż obejmowały swoim zakresem zagadnienia związane z techniką i technologią przyjęcia, konserwacji i przetworywania ziarna zbóż, jego przetwórstwa w młynach, kaszarniach i płatkarniach oraz opracowywanie technologii produkcji nowych wyrobów przemysłu zbożowo-młynarskiego i makaronowego.

Szeroki zakres prac obejmował również problematykę związaną z urządzeniami i metodami badań jakości ziarna zbóż i przetworów zbożowych oraz współpracą w zakresie opracowywania i oceny nowych urządzeń z producentami przemysłowych maszyn i urządzeń stosowanych w przemyśle zbożowo-młynarskim.

W wyniku realizacji tych prac wdrożono do przemysłu wiele opracowanych rozwiązań między innymi w zakresie techniki i technologii wietrzenia ziarna, poprawy energochłonności suszar zbożowych, nowoczesnej technologii przemialu ziarna zbóż.

Obok działalności badawczo-rozwojowej, w latach poprzednich, w strukturach ZBPP znajdowały się również trzy oddziały o charakterze doświadczalno-produkcyjnym:

→ Odział ZBPP w Bydgoszczy przy ul. Startowej 2 (sprywatyzowany i wyłączony ze struktury organizacyjnej ZBPP w Warszawie w 1998 roku) – opracowanie i produkcja aparatury kontrolno-pomiarowej do oznaczania
Zakład Przetwórstwa Zbóż i Piekarstwa

jakości ziarna, mąki oraz właściwości półprodutków i wyrobów gotowych, którego kierownikiem był prof. dr hab. Kazimierz Sadkiewicz.

→ Zakład Doświadczalny Polepszaczy Piekarskich, Ciastkarskich i Dietetycznych w Bydgoszczy ul. Startowa 2a (sprywatyzowany i wyłączony ze struktury organizacyjnej ZBPP w Warszawie w 1996 roku) – produkcja polepszaczy pieczywa o nazwie AKO którego kierownikiem był mgr inż. Edmund Domachowski.

Za najważniejsze osiągnięcia ZBPP w dziedzinie technologii wytwarzania pieczywa należy uznać opracowany i szeroko wdrożony oryginalny (opatentowany) sposób poprawy jakości pieczywa z zastosowaniem krajowego polepszacza AKO, którego produkcję podjęto w Zakładzie Doświadczalnym ZBPP w Bydgoszczy.

Opracowano metody i aparaty do badania jakości mąki m.in. komplet urządzeń do oznaczania liczby opadania i komplet urządzeń do oznaczania ilości i jakości glutenu. Zaproponowano metodę próbnego wypieku i wyprodukowano wyposażenie do jego wykonania (miesiarka, piec z komorą rozrostu, objętościomierz).

Najważniejsze zadanie Zakładu Przetwórstwa Zbóż i Piekarstwa, obecnie jak i w latach poprzednich, związane jest z opracowywaniem i wdrażaniem do przemysłu, nowoczesnych systemów oceny jakości ziarna zbóż i przetworów zbożowych, tak aby przedsiębiorstwa te sprostały konkurencji państw Unii Europejskiej. Jednocześnie prace te mają na celu poprawę jakości zbóż uprawianych w Polsce, w celu pełnego zaspokojenia potrzeb przetwórców a tym samym i konsumentów.

Statutowym zadaniem Instytutu Biotechnologii Przemysłu Rolno Spożywczego jest realizacja prac naukowo-badawczych dla potrzeb przemysłu spożywczego oraz wdrażanie ich wyników do praktyki przemysłowej. Zakład Przetwórstwa Zbóż i Piekarstwa, podobnie jak w poprzednich latach Centralne Laboratorium Technologii Przetwórstwa i Przechowywania Zboża i Zakład Badawczy Przemysłu Piekarskiego, realizuje szereg prac badawczych w ramach działalności statutowej. Prace te upowszechniane są między innymi poprzez publikację szeregu artykułów, szczególnie w Przeglądzie Zbożowo-Młynarskim i Przeglądzie Piekarstwa i Cukiernictwa, jak również w postaci
referatów wygłaszanych na wielu konferencjach i szkoleniach. Wieloletnie doświadczanie pracowników Zakładu oraz specjalistyczna aparatura badawcza pozwala na coraz szerszą współpracę z przemysłem w zakresie realizowanych prac.

Zakład współpracuje z coraz większą liczbą przedsiębiorstw, zarówno piekarskich, jak i młynarskich, od których systematycznie otrzymujemy próbki mąki lub ziarna, celem określenia podstawowych cech jakościowych, jak również cech reologicznych – oznaczanych za pomocą farinografu, alweografu, ekstensografu, amylografu czy aparatu mixolab. Celem tych badań jest miedzy innymi właściwy wybór metod oceny jakości mąki dokonany przez przedsiębiorstwo zbożowo-młynarskie przy współpracy z piekarnią, co pozwala na produkcję mąki o jakości odpowiedniej do danego asortymentu pieczywa oraz konkretnej techniki i technologii wypieku.

Od 1992 roku prowadzimy prace w zakresie techniki pomiarowej bliskiej podczerwieni – NIR. Po trzech latach badań – od 1995 roku – w Centralnym Laboratorium TPiPZ a obecnie w Zakładzie Przetwórstwa Zbóż i Piekarstwa IBPRS, funkcjonuje Centrum Kalibracji Techniki NIR, co pozwala na instalowanie nowych kalibracji oraz stałą obsługę kalibracyjną w ponad dwustu urządzeniach, pracujących w zakładach przemysłu zbożowo-młynarskiego na terytorium całego kraju. Znaczna większość urządzeń techniki NIR corocznie dostarczana jest do nas, gdzie dokonujemy ich atestacji z wprowadzaniem korekty zainstalowanych kalibracji.

Od połowy lat 80. tworzymy i weryfikujemy kalibracje dla pojemnościowych wilgotnośćomierzów elektrycznych do ziarna (I i II klasy dokładności).

144
Obecny zakres działalności
Zakładu Przetwórstwa Zbóż i Piekarstwa

→ Ocena przydatności technologicznej ziarna zbóż dla celów optymalnego wykorzystania w przetwórstwie,
→ doskonalenie techniki i technologii przetwórstwa oraz przechowywania i konserwacji ziarna zbóż,
→ doskonalenie technologii i techniki produkcji wyrobów piekarskich i ciastkarskich,
→ opracowywanie nowych lub udoskonalonych metod oceny jakości oraz standardów handlowych dla ziarna zbóż i jego przetworów oraz wyrobów piekarskich i ciastkarskich,
→ szkolenia z zakresu standaryzacji jakości zbóż, przetworów zbożowych i piekarskich wraz z zasadami, organizacją i standaryzacją skupu interwencyjnego ziarna zbóż w Unii Europejskiej,
→ opracowywanie zakładowych dokumentów normalizacyjnych,
→ ocena jakości zbóż i ich przetworów oraz wyrobów piekarskich i ciastkarskich,
→ atestacja aparatury służącej do oceny jakości ziarna zbóż dla potrzeb jednostek gospodarczych,
→ organizacja badań biegłości w zakresie oceny jakości ziarna pszenicy i mąki pszennej.

Dalszy rozwój Zakładu jest nierozerwalnie związany z rozwojem całego Instytutu. W obecnej sytuacji rynkowej oraz wobec zasad finansowania działalności naukowej w Polsce niezbędne są aktywne działania pozwalające na rozwój kadry naukowej Zakładu poprzez uzyskiwanie stopni i tytułów naukowych, zwłaszcza przez młodych pracowników, oraz doskonalenie stanu i wykorzystania wyposażenia badawczo-pomiarowego, w tym uzyskiwanie akredytacji w zakresie kolejnych metod badawczych. Pozwoli to na intensyfikację dotychczas prowadzonego wyżej opisanego zakresu działalności Zakładu a także rozszerzenie tematyki realizowanych prac badawczych, w tym z zakresu działalności branży piekarskiej (m.in. dodatki do pieczywa poprawiające jego wartość zdrowotną i odżywczą) oraz produkcji żywności głęboko przetworzonej na bazie ziarna zbóż.

Rozwój kadry oraz zaplecza badawczego umożliwi uzyskiwanie projektów badawczych zarówno krajowych, jak i międzynarodowych, oraz programów wieloletnich finansowanych z budżetu państwa, dotyczących stałych prac.
o charakterze monitoringu np. w zakresie jakości technologicznej ziarna zbóż zbieranego w Polsce.

Warunkiem niezbędnym do zrealizowania ww. planów jest dalsza ścisła współpraca z przedsiębiorstwami zbożowo-młynarskimi i piekarskimi, która pozwala na weryfikację w warunkach praktyki przemysłowej wyników badań wykonanych w warunkach laboratoryjnych, pozyskiwanie materiału badawczego niezbędnego do realizacji prac badawczych, precyzowanie i rozwiązywanie najpilniejszych problemów tych branż oraz dzięki prowadzonej działalności usługowej na rzecz tych przedsiębiorstw pozyskiwanie środków na dofinansowanie prowadzonych badań statutowych.

Piśmiennictwo – w zakresie działalności Zakładu Badawczego Przemysłu Piekarskiego:
Odpoczątku istnienia (1949 r.) Zakład Informacji Naukowo-Technicznej (ZINT) realizuje zadania związane z informacją naukowo-techniczną i wspomagającą badania uzupełniając w ten sposób działalność naukowo-badawczą Instytutu.

Do podstawowych zadań realizowanych w Zakładzie należą: działalność biblioteczna, działalność wydawnicza, tworzenie i utrzymywanie baz danych, upowszechnianie i promocja osiągnięć naukowych i badawczo-rozwojowych Instytutu oraz prowadzenie prac w zakresie ochrony własności intelektualnej.

Biblioteka Instytutu jest jedną z największych i najlepiej zaopatrzonych bibliotek naukowych w resorcie rolnictwa. Księgozbiór liczy ok. 25 tys. woluminów, w tym 8186 tys. książek i ponad 9 tys. czasopism oraz 7516 jednostek zbiorów specjalnych. Z bogatych zbiorów biblioteki korzystają pracownicy instytutów i wyższych uczelni, studenci oraz pracownicy przemysłu spożywczego.

W ramach działalności wydawniczej Zakład wydawał: „Prace Instytutów i Laboratoriów Badawczych Przemysłu Spożywczego” (1951–2010), „Informer Postępu Technicznego w Przemysle Fermentacyjnym” (1959–1976),
Zakład Informacji Naukowo-Technicznej
Od lewej: Kinga Wesołowska, Karyna Kuciak-Próchniak, Renata Siwek, Hanna Złotkowska, Irena Romaniuk

Zakład Informacji Naukowo-Technicznej współpracuje z zakładami merytorycznymi Instytutu. Współpraca ta polega między innymi na wyszukiwaniu i dostarczaniu najnowszych pozycji literaturowych potrzebnych do realizacji tematów naukowo-badawczych.

W ZINT został opracowany słownik – Tezaurus Technologii Żywności i Przemysłu Spożywczego. Zakres tematyczny Tezaurusa jest szeroki i obejmuje terminologię dotyczącą technologii żywności, biotechnologii przemysłu spożywczego, a także zagadnień międzybranżowych. W Zakładzie Tezaurus jest wykorzystywany do budowy komputerowych baz danych. W oparciu o ten słownik zbudowano biblioteczną bazę czasopism „CZAS” i katalog książek „KAT”.

Pracownicy Zakładu współtworzą z Centralną Biblioteką Rolniczą bazę SIGŻ (System Informacji o Gospodarce Żywnościowej) i bazę AGRIS (International Information System for Agricultural Sciences and Technology, FAO) oraz Ośrodkiem Przetwarzania Informacji Bazę SIBROL (System Informacji o Badaniach Rolniczych).

W ramach upowszechnienia osiągnięć nauki i techniki pracownicy Zakładu biorą udział w przygotowywaniu materiałów reklamujących działalność Instytutu oraz uczestniczą w targach i wystawach promujących osiągnięcia Instytutu.
Zakład realizuje również zadania związane z ochroną własności intelektualnej, prowadząc badania stanu techniki, czystości patentowej i zdolności patentowej prowadzonych tematów prac badawczych w Instytucie.

Od 2006 r. ZINT (po likwidacji Sekcji Normalizacji Branżowej) prowadzi aktualizację zbioru norm i dokumentów normalizacyjnych, przekazuje zakładom merytorycznym informacje dotyczące ustanowionych i wycofanych norm, oraz aktów prawnych związanych z działalnością Instytutu.

Wszystkie omawiane zadania są realizowane przez zespół pracowników o wysokich kwalifikacjach, dużym doświadczeniu i znajomości problematyki badawczej Instytutu.

Zmiany nazwy Zakładu po II wojnie światowej

1949–1951 – Dział Dokumentacji Naukowo-Technicznej
1951–1962 – Działowy Ośrodek Dokumentacji Technicznej i Ekonomicznej
1962–1971 – Branżowy Ośrodek Dokumentacji Naukowej, Technicznej i Ekonomicznej
1971–1991 – Zakład Informacji Naukowej, Technicznej i Ekonomicznej
1997 – Zakład Informacji Naukowo-Technicznej
Dział Planowania i Koordynacji Badań

Historia Działu Planowania i Koordynacji Badań sięga pierwszych lat istnienia IPF. Okresowo do IPF przyłączony został 26-osobowy oddział krakowski zlikwidowanego Instytutu Ekonomiki i Organizacji Przemysłu i z niego utworzono Zakład Ekonomiki i Organizacji Przemysłu Spożywczego.

Dział Planowania i Koordynacji Badań współpracuje ze wszystkimi jednostkami organizacyjnymi Instytutu w celu zapewnienia prawidłowej realizacji prac badawczo-rozwojowych i usługowych prowadzonych w Instytucie.

Dział Planowania i Koordynacji Badań od szeregu lat sporządza cykliczne opracowania na potrzeby jednostek nadrzędnych. Przygotowuje dla MNiSW materiały do oceny parametrycznej Instytutu, na podstawie której ustalana
Dział Planowania i Koordynacji Badań
Od lewej: Iwona Szuba, Justyna Ruszczak, Anna Bednarek, Lila Nabiałek, Anna Kicler
jest kategoria IBPRS. Co roku DP opracowuje na podstawie materiałów zebranych od Zakładów/Oddziałów/Pracowni/Działów „Plan badań naukowych i prac rozwojowych” oraz sprawozdanie z działalności Instytutu i „Informacje o jednostce badawczo-rozwojowej” przekazywane MRiRW. Corocznie przygotowuje również składany w MNiSW „Wniosek o przyznanie środków finansowych na działalność statutową” oraz współuczestniczy w opracowaniu wniosków o dofinansowanie ze środków budżetowych inwestycji służących potrzebom badań naukowych lub prac rozwojowych. Na początku każdego roku przygotowuje dla Dyrekcji ocenę parametryczną Zakładów merytorycznych z trzech ostatnich lat. Opracowuje również roczny plan Seminarii Instytutowych oraz Plan szkoleń zewnętrznych (krajowych i zagranicznych). Co miesiąc DP przeprowadza analizyzych przychodów i kosztów poszczególnych Zakładów merytorycznych w formie zestawień przekazywanych Dyrekcji, DFK i Zakładom.

Dział Planowania prowadzi całą obsługę prac realizowanych w Zakładach Instytutu w ramach działalności statutowej, nadzoruje przebieg i terminowość ich wykonania. Dokonuje kontroli formalnej konspektów i sprawozdań, kompletuje i przekazuje recenzentom dokumentację tematów, bierze udział w odbiorach prac, przygotowuje protokoły odbioru. Prowadzi również obsługę formalną projektów badawczych i celowych – przygotowuje umowy i aneksy oraz współuczestniczy w przygotowaniu wniosków, kontroluje prawidłowość i terminowość rozliczeń, pośredniczy w kontaktach pomiędzy jednostkami finansującymi projekty a przedstawicielami przemysłu. Na zlecenie MRiRW, MNiSW i innych instytucji przygotowuje różnego rodzaju ankiety i opracowania. W zakresie współpracy z przemysłem sporządza umowy, aneksy oraz zbiorcze oferty na badania, na prace badawczo-rozwojowe i usługowe. Prowadzi obsługę organizacyjno-formalną szkoleń krajowych i zagranicznych m.in. przygotowuje dokumentację, oblicza wysokości należnych diet, ewentualnie dokonuje zgłoszeń uczestników i rezerwacji hoteli. Bierze udział w opracowywaniu Zarządzeń Dyrektora. Na polecenie Dyrekcji przygotowuje wszelkie zestawienia, analizy ogólne lub tematyczne. Uczestniczy w opracowywaniu Regulaminu Organizacji Wewnętrznej IBPRS.

DP na bieżąco śledzi strony internetowe MNiSW, NCBiR, NCN i przekazuje Zakładom najważniejsze informacje dotyczące możliwości pozyskiwania środków w ramach różnych projektów.

Pracownicy DP podnoszą swoje kwalifikacje na szkoleniach zewnętrznych.
Działy Pomocnicze IPF I IBPRS

W przeszłości Dział Planowania przechodził kilka reorganizacji. Wcześniej istniał jako Sekcja Planowania w Instytucie Przemysłu Fermentacyjnego, Zakład Organizacji Badań oraz zakład Organizacji Badań i Informacji Naukowo-technicznej. Najważniejszymi działaniami prowadzonymi w poprzednich latach było m.in. opracowywanie rocznych sprawozdań dla Ośrodka Przetwarzania Informacji w formie: „Ankiety jednostki naukowej”, opracowywanie bazy danych w SIBROL dla Centralnej Biblioteki Rolniczej, współorganizowanie szkoleń dla kadr przemysłu rolno-spożywczego, specjalistów z Ośrodka Doradztwa Rolniczego i nauczycieli szkół rolniczych, jak również targów i wystaw.

Koordynował także realizację programów rządowych i resortowo-branżowych, np. CPBR i RPBR. W ramach współpracy z zagranicą prowadził działalność w zakresie sprawozdawczości, planowania oraz prac organizacyjnych związanych z wyjazdami pracowników i przyjazdami osób z innych krajów oraz współpracował w zakresie realizacji tematów z planu RWPG dot. biotechnologii. Prowadził także formalną obsługę wdrożeń.
STANOWISKO DS. JAKOŚCI

Kierownik
mgr inż. Anna Nurek

Jakość nigdy nie jest dziełem przypadku, zawsze jest wynikiem wysiłku człowieka.
John Ruskin

W latach dziewięćdziesiątych XX wieku, w warunkach gospodarki wolno-rynkowej, najwyższe kierownictwo wielu organizacji w tym również Instytutu Biotechnologii Przemysłu Rolno-Spożywczego rozważało możliwości i sposoby zwiększenia konkurencyjności oferowanych usług. Podstawowym celem działania każdej organizacji jest zadowolony klient, a warunkiem uzyskania zadowolonego klienta jest spełnienie jego wymagań i oczekiwań. Dlatego też w Instytucie podjęto (wtedy niełatwą i nieoczywistą) decyzję o wdrożeniu systemu zarządzania według przyjętych międzynarodowych standardów. Podczas pierwszych spotkań na temat wdrażania systemu zarządzania zadawano sobie wiele pytań, na które w tamtych czasach nie było jednoznacznej odpowiedzi. Dotyczyły one głównie wątpliwości co do korzyści wynikających z wprowadzenia systemu, oraz nakładów które należało ponieść przy jego wdrażaniu.
Stanowisko ds. Jakości
Od lewej: Emilia Kiljańczyk, Anna Nurek

Podstawą do skutecznego wdrażania systemu zarządzania było Zarządzenie Nr 8/2001 Dyrektora IBPRS – prof. dr. hab. Romana A. Grzybowskiego, w sprawie funkcjonowania systemu zapewnienia jakości w IBPRS. Na podstawie tego Zarządzenia:

→ nadzór merytoryczny i organizacyjny nad funkcjonowaniem systemu został powierzony Zastępcy Dyrektora ds. Naukowych – doc. dr. hab. Jerzemu Czubie,

→ funkcję Kierownika ds. Jakości powierzono mgr inż. Annie Nurek,

→ funkcję Kierowników Technicznych powierzono Kierownikom poszczególnych Zakładów.

Zakłady, które podjęły w tamtym czasie wyzwanie wdrażania systemu to: Zakład Analizy Żywności, Zakład Technologii Spirytusu i Drożdży (obecnie Zakład Technologii Fermentacji), Zakład Technologii Przetworów Owocowych i Warzywnych, Zakład Technologii Piwa i Słodu (obecnie Zakład Technologii Piwa, Słodu i Żywności Prozdrowotnej). Systemem objęto również jednostki organizacyjne współpracujące z zakładami merytorycznymi.

W styczniu 2001 r. wydano 16 procedur ogólnych, a w czerwcu 2002 r. Deklarację Polityki Jakości oraz Księgę Jakości. W wyżej wymienionych dokumentach opisano system zarządzania (wtedy jeszcze system jakości) funkcjonujący w Instytucie.

We wrześniu 2001 r. przeprowadzone zostały pierwsze audity wewnętrzne w IBPRS, których celem była ocena zgodności działania Instytutu z wymaganiami normy PN-EN ISO 17025. W wyniku auditów podjęto szereg działań korygujących we wszystkich jednostkach organizacyjnych objętych systemem. Pierwszy przegląd zarządzania został przeprowadzony w grudniu 2001 r.
Wszystkie wyżej wymienione działania przyczyniły się do skutecznego wdrożenia systemu zarządzania.

Audit akredytacyjny odbył się we wrześniu 2003 r. Instytut Biotechnologii Przemysłu Rolno-Spożywczego otrzymał, jako jeden z pierwszych instytutów naukowych z branży przemysłu rolno-spożywczego, Certyfikat Akredytacji Laboratorium Badawczego Nr 452. Od tego czasu, raz w roku odbywały się kolejne oceny, natomiast w 2007 r. i 2011 r. zostały przeprowadzone ponowne oceny PCA, w wyniku których Instytut odnawiał ważność Certyfikatu Akredytacji na kolejne 4 lata.

Od czasu uzyskania Certyfikatu Akredytacji, Instytut rozszerzał zakres akredytacji o nowe zakłady i nowe metody badawcze. W chwili obecnej – w trzecim cyklu akredytacji, Zakresem Akredytacji Nr AB 452 objętych jest około 80 metod badawczych stosowanych w Zakładzie Analizy Żywności, Zakładzie Technologii Fermentacji, Zakładzie Technologii Przetworów Owocowych i Warzywnych, Zakładzie Technologii Piwa i Słodu oraz Zakładzie Technologii Koncentratów Spożywczych.

Istotnymi wydarzeniami wymagającymi znacznego wysiłku w celu utrzymania integralności systemu zarządzania było połączenie IBPRS z:

→ Centralnym Laboratorium Przemysłu Koncentratów Spożywczych, Centralnym Laboratorium Technologii Przetwórstwa i Przechowań Zboża oraz Zakładem Badawczym Przemysłu Piekarskiego (od 1.01.2003 r.), w wyniku czego powstał Oddział Koncentratów w Poznaniu oraz Zakład Przetwórstwa Zboża i Piekarnictwa;

→ Centralnym Laboratorium Chłodnictwa, Centralnym Laboratorium Przemysłu Ziemniaczanego, Centralnym Ośrodkiem Badawczo-Rozwojowym Przemysłu Gastronomicznego i Artykułów Spożywczych (od 1.01.2008 r.), wyniku czego powstał Oddział Koncentratów Spożywczych i Produktów Skrobiowych z siedzibą w Poznaniu, oraz Oddział Chłodnictwa i Jakości Żywności z siedzibą w Łodzi;

→ Instytutem Przemysłu Mięsnego i Tłuszczowego, oraz Instytutem Przemysłu Cukrowniczego (od 1.07.2009 r.), w wyniku czego powstał Oddział Technologii Mięsa i Tłuszczu z siedzibą w Warszawie i Oddział Cukrownictwa z siedzibą w Lesznie.
We wszystkich wyżej wymienionych organizacjach już wcześniej były prowadzone prace mające na celu uzyskanie Certyfikatu Akredytacji Laboratorium Badawczego.

W Centralnym Laboratorium Przemysłu Koncentratów Spożywczych (CLPKS) w Poznaniu:
→ w 1995 r. przeszkolono 4 osoby, które uzyskały tytuł auditora wewnętrznego laboratorium badawczego,
→ w 1996 r. wydano Zarządzenie Dyrektora CLPKS o przystąpieniu do wdrożenia systemu zapewnienia jakości zgodnie z wymaganiami PN-EN 45001 i Przewodnika ISO /IEC 25 oraz powołano Pełnomocnika Dyrektora ds. Jakości,

została przedłużona do 2001 r., a następnie do 2009 r. na zgodność z wymagańiami normy PN-EN ISO/IEC 17025.

Od 2008 r. datuje się wspólny rozdział dotyczący akredytacji obu wyżej wymienionych jednostek, już jako Zakład Jakości Żywności. Zakład ten posiada Certyfikat Akredytacji Nr AB 212. Uzyskany certyfikat potwierdza, iż kompetencje techniczne oraz system zarządzania laboratorium, gwarantujące bezstronność, niezależność oraz jakość świadczonych usług spełniają wymagania systemu zarządzania jakością.

W Oddziale Cukrownictwa IBPRS (do 2009 r. w Instytucie Przemysłu Cukrowniczego) w styczniu 2006 roku rozpoczęto działania prowadzone w związku z wdrażaniem systemu zarządzania wg normy PN-EN ISO/IEC 17025. Dyrekcja wprowadziła do planu działalności merytorycznej zadanie
finansowane z środków własnych pt. „Akredytacja laboratoriów badawczych w Pracowni Analityki Cukrowniczej, Pracowni Mikrobiologii oraz Pracowni Ochrony Środowiska i Gospodarki Wodą”. W wyniku podjętych działań 11.07.2007 r. uzyskano Certyfikat Akredytacji Laboratorium Badawczego Nr AB 803, wydany przez Polskie Centrum Akredytacji.

IBPRS jest członkiem w Klubie Polskich Laboratoriów Badawczych „POLLAB” (nr członkowski 321) oraz w Klubie „Polskie Forum ISO 9000” (nr członkowski 502).

W najbliższej przyszłości w Instytucie będą kontynuowane działania na rzecz zapewnienia i utrzymania wysokiej jakości badań, w tym m.in. poprzez bezkompromisową realizację wymagań polityki jakości, oraz profesjonalne i zgodnie z ustalonymi metodami wykonywanie badań.

Podejmowane od wielu lat przez kierownictwo IBPRS wysiłki zmierzające do uzyskania, utrzymania i rozszerzania zakresu akredytacji, przyczyniły się do znacznego umocnienia pozycji Instytutu na rynku badań żywności. Znacznie wzrosło zaufanie klientów, co z kolei pociągnęło za sobą wzrost liczby zleceń. Dzięki opisanym powyżej działaniom nastąpiło poprawienie warunków środowiskowych, w których wykonuje się badania, unowocześnienie wyposażenia, zmniejszenie pracochłonności badań poprzez zastąpienie wielu operacji manualnych operacjami zautomatyzowanymi. Należy podkreślić również znaczny wzrost kompetencji technicznych personelu, wynikający z przyjętego systemu szkoleń pracowników oraz udziału w badaniach biegłości.
DZIAŁ FINANSOWO-KSIĘGOWY

Główny Księgowy
mgr Genowefa Wiesława Kołakowska

Dział Finansowo-Księgowy z racji specyfiki zadań powstał wraz z powołaniem I PF. DFK realizuje politykę finansową i płacową Instytutu. Uczestniczy w planowaniu czyli przekłada plan rzeczowy na finansowy, analizuje jego wykonanie, prowadzi księgi rachunkowe. W celu realizacji zadań i prawidłowej oraz kompletnej ewidencji zdarzeń gospodarczych w księgach rachunkowych, współpracuje ze wszystkimi jednostkami organizacyjnymi Instytutu.

Dla zapewnienia niezbędnych danych do prawidłowego zarządzania Instytutem, DFK co miesiąc sporządza w formie tabelarycznej informację o przychodach i kosztach oraz źródłach finansowania działalności poszczególnych jednostek organizacyjnych dla Dyrekcji Instytutu, oraz Zakładów.

DFK po zakończeniu każdego roku sporządza Sprawozdanie Finansowe Instytutu oraz szereg sprawozdań do GUS.

Przygotowuje informacje finansowe dla Działu Planowania i Koordynacji Badań (DPIKB) ze szczegółowością potrzebną do: złożenia wniosku o przyznanie dofinansowania, oceny parametrycznej, sprawozdania z działalności, rozliczania projektów.
DFK współpracuje z Kierownikami Zakładów/projektów, żeby przełożyć zapotrzebowanie definiowane przez naukowców na język finansów i na skutki mierzone pieniądzem.

DFK zapewnia wywiązywanie się Instytutu z narzuconych przepisami prawa obowiązków w zakresie ustawy o rachunkowości, ustaw podatkowych – uopdp i uopdpf, ustawy o VAT.
DZIAŁ SPRAW PRACOWNICZYCH

Kierownik
Katarzyna Olędzka

DZIAŁ TECHNICZNY

Kierownik
inż. Adam Korczak
Dział Techniczny
Od lewej: Adam Korczak, Marcin Sokołowski, Barbara Balcerak, Ignacy Krupa, Robert Chojnacki, Zbigniew Tulik, Rafał Bratkrajc, Zbigniew Jagodziński, Adam Rejf, Beata Kaczmarek-Szczeczko
DZIAŁ ADMINISTRACYJNY

Kierownik
Danuta Stanios

Od lewej: Jerzy Niesiołkowski, Dorota Żurek, Marian Błeszyński, Anna Jarząb, Danuta Stanios, Zofia Gaczyńska, Iwona Mateńko, Małgorzata Tarucin, Jan Tarucin.
Nieobecna: Marzanna Łupińska

167
STANOWISKO DS. BEZPIECZEŃSTWA I HIGIENY PRACY

Kierownik
inż. Bogdan Jastrzębski

PEŁNOMOCNIK DS. OCHRONY INFORMACJI NIEJAWNych (OIN) Z PODLEGŁą KANCELARIą TAJną

Kierownik
mgr Ludwik Najdychor

Początkowo Pracownia nie pretendowała do tytułu placówki naukowo-badawczej. Jej zadaniem była, we współpracy z Inspektoratem Przemysłu Rolnego przy Wojewódzkim Urzędzie Ziemskim w Bydgoszczy, pomoc przy organizowaniu produkcji rolniczej, poprzez opiekę merytoryczną, nadzór technologiczny, kontrolę przerabianych surowców, dostarczanie gorzelniom...
niezbędnych odczynników chemicznych i podstawowych pomiarowych przyrządów laboratoryjnych (kwasomierze, aparaty Sallerona, filtry itp.).

Tuż po wojnie stosowano w gorzelniach drożdże piekarskie, nieprzystosowane do przerobu spirytusu. Dlatego też zaistniała konieczność wyselekcjonowania odpowiedniej rasy drożdży dla gorzelnictwa. Pracę tę podjął inż. Stanisław Wąsowicz i w jej wyniku wyselekcjonowano szczepionkę M₃, którą wprowadzono do produkcji i stosowano w gorzelniach aż do roku 1964. Pomimo ciężkich warunków lokalowych i trudności w zdobywaniu odpowiedniego specjalistycznego wyposażenia laboratoryjnego – zarówno zakres jak i zasięg terytorialny wykonywanych prac nieustannie się powiększał obejmując patronatem coraz większą liczbę gorzelni na terenie kraju (np.: w roku 1949 zaopatrywano w odczynniki i szczepionki czystych kultur drożdży 539 gorzelni).

Prowadzono wówczas szeroką działalność doradczą, udzielając porad fachowych, prowadząc liczne szkolenia i kursy, na których w formie wykładów i dyskusji podnoszono kwalifikacje personelu kierowniczego gorzelni. Dyktowany rosnącymi potrzebami przemysłu rolnego zakres świadczonych usług pociągnął za sobą zmiany organizacyjne, w wyniku których w 1950 roku w ramach Pracowni wydzielono 5 działów (organiczny, nieorganiczny, biologiczny, produkcyjny i administracyjny) a stan osobowy załogi zwiększył się do 34 pracowników, w tym 8 z wyższym wykształceniem.

W roku 1952 zarządzeniem Ministra Państwowych Gospodarstw Rolnych powstało pięć laboratoriów terenowych: w Koszalinie, Lublinie, Poznaniu, Wrocławiu i Laboratorium Przemysłu Rolnego w Warszawie, które przejęły częściowo obowiązki spoczywające na laboratorium bydgoskim. Nadmienić należy, że Pracownia w Bydgoszczy pełniła w tym okresie funkcję laboratorium centralnego, które aktywnie uczestniczyło w procesie tworzenia się ww. placówek poprzez opracowanie schematu organizacyjnego i szkolenie kadr.

Następnie teren działalności usługowej Pracowni ograniczył się do województwa: bydgoskiego, gdańskiego i olsztyńskiego, które zostały objęte pomocą techniczną w formie porad i instrukcji w zakresie technologii, analiz oraz prac naukowo-adaptacyjnych. Niezależnie od tego kontynuowano produkcję szczepionek czystych kultur i odczynników gorzelniczych dla wszystkich zakładów przemysłu rolnego PGR. Rozszerzono też zakres prac analitycznych o analizy węgla, wody, gleby i pasz. Do tego celu konieczne stały się: adaptacja nowych metod analitycznych, opracowanie instrukcji pobierania prób dla wszystkich typów zakładów przemysłu rolnego (mieszalnie pasz, płatkarnie, krochmalnie itd.) oraz ich kontrola.
W zakresie technologii gorzelnictwa opracowano szereg instrukcji usprawniających proces fermentacji i podnoszących jego wydajność, m.in. umożliwiających przerób surowców nietypowych takich jak: sorgo, mąka, śliwki, melasa, szlam krochmalniczy, dotyczących stosowania soli mineralnych, a także wdrażania w procesie gorzelniczym drożdży wysiewowych odbieranych z fermentacji głównej.

W 1955 roku powstało Centralne Laboratorium Przemysłu Rolnego PGR z dyrekcją w Warszawie, którego zadaniem było stworzenie instytucji łączącej w sobie cechy placówki instruktażowej, komórki postępu technicznego oraz usługowego wykonawstwa analiz chemicznych. W jego skład weszła Pracownia w Bydgoszczy, która w tym samym roku otrzymała od Ministerstwa kredyt na budowę nowoczesnego laboratorium. Do jego budowy walnie przyczynił się Kierownik Pracowni – mgr Czesław Witkowski.

Dwa lata później zespół bydgoski przeniósł się do budynku usytuowanego przy ul. Powstańców Wielkopolskich 17. W tym czasie zmienił się częściowo charakter pracy, liczba wykonywanych analiz usługowych nieco zmalała na korzyść prac naukowo-badawczych i doświadczalnych, dyktowanych coraz to większymi potrzebami rozwijającego się rolnictwa.

Mgr Czesław Witkowski (ówczesny Kierownik Pracowni) prowadził szeroko zakrojoną badania nad użytkowaniem wodnych hydrolizatów bukowych, składem aminokwasowym drożdży paszowych wyhodowanych na ww. hydrolizacie oraz zdolnością wykorzystania przez drożdże kwasów obecnych w niniejszym hydrolizacie. Pracownia w Bydgoszczy zrealizowała również projekt urządzenia drożdżowni w gorzelni Racinewo, której zadaniem w okresie zimowo-wiosennym była produkcja płynnych drożdży paszowych. Zainteresowania naukowe zespołu bydgoskiego były ukierunkowane na doskonalenie procesu produkcji spirytusu. Między innymi inż. Zbigniew Murawski, inż. Stefan Górny i inż. Henryk Szczodrowski pracowali nad wpływem regulacji kwasowości czynnej zacierów fermentujących na ilość i jakość spirytusu surowego. Ponadto inż. Zbigniew Murawski opracował technologię produkcji spirytusu jabłkowego w gorzelniach rolniczych oraz określił wpływ dodatku amoniu i wapnia do zacierów na zawartość furfuzy w spirytusach surowych. Prowadzone przez Pracownię bydgoską badania miały na względzie m.in.: uproszczenie technologii i usprawnienie procesów jednostkowych produkcji spirytusu, zmniejszenie energochłonności produkcji, wzbogacenie wartości paszowej wywaru, wykorzystanie w gorzelnictwie odpadów produkcji rolnej i surowców nietypowych (jako źródła fermentujących węglowodanów), wyse-
lekcjonowanie i wprowadzenie do powszechnego stosowania w gorzelniach nowych ras drożdży.

Pracę nad otrzymywaniem i doskonaleniem nowych szczepów drożdży przydatnych dla gorzelnictwa, zainicjowaną przez pierwszego kierownika laboratorium inż. Stanisława Wąsowicza, kontynuowała inż. Halina Kęsy. Efektem tej pracy było wprowadzenie do produkcji nowej rasy drożdży oznaczonej symbolem B₄, tzw. „bydgoskich czwórek”.

Dalsze badania nad drożdżami podjęte w Pracowni bydgoskiej przez zespół pod kierownictwem inż. Stefana Górnego, miały na celu umożliwienie szybkiego uzyskania dużej populacji drożdży w gorzelni, z pominięciem wywierdzania szczepionki z czystej kultury. W warunkach laboratoryjnych Pracowni drożdże gorzelnicze B₄ i Bc16a były hodowane w fermentorach, a następnie odwirowywane, przemywane i suszone na płytach z nawiewem. W celu przedłużenia ich trwałości i jednoczesnej eliminacji ich higroskopijności były nasalane bezwodnym siarczanem sodowym. Drożdże te w postaci tak uzyskanego preparatu suchego były sprawdzane pod względem parametrów odnoszących się do ich prawidłowego rozwoju i rozmnażania w kadkach drożdżowych w warunkach gorzelni w Łabiszynie. Tak wyhodowanymi drożdżami (w przycierkach) były szczepione zacierki. Na podstawie prowadzonych badań została opracowana technologia otrzymywania technicznie czystych drożdży gorzelniczych w stanie suchym, które wprowadza się do zacierów słodkich, po uprzednim poddaniu ich rehydratacji i dezynfekcji.

Technologia suszenia drożdży gorzelniczych została wdrożona w Wytwórni Drożdży w Maszewie Lęborskim. Zakrojone na szeroką skalę badania adapa
cyjne w gorzelniach potwierdziły przydatność i celowość zastosowania tej postaci drożdży oraz udowodniły korzyści ekonomiczne z niego płynące. Stosowanie drożdży suchych o symbolu B₄ i Bc16a dało pozytywne efekty nie tylko w postaci oszczędności energii i robocizny oraz zwiększenia produktywności urządzeń, ale stało się także celną bronią w eliminacji zakażeń zacierów, które miały miejsce w dotychczasowym sposobie propagacji drożdży w gorzelni.
W latach 70. Pracownia dodatkowo sprawowała nadzór merytoryczny nad działalnością około 50 laboratoriów zakładowych powstałych przy PGR, ze 131 laboratoriów znajdujących się pod stałą kontrolą CLPR. Było to podyktowane rozszerzeniem przez Centralny Zarząd PPGR zakresu nadzoru nad laboratoriami międzyzakładowymi i oceny ich mocy produkcyjnych. Działalność tę realizowano poprzez prowadzenie wizytacji laboratoriów, kontrolę poprawności wykonywania badań i oceny jakości produktów, prowadzenie szkoleń pracowników laboratoriów w zakresie analityki paszowej i gorzelniczej, udzielania pomocy merytoryczno-organizacyjnej placówkom nowopowstającym oraz prowadzenia stałego instruktażu i doradztwa w sprawach techniczno-organizacyjnych.

W latach 80. w IBPRS prowadzono badania nad stworzeniem nowych udoskonalonych szczepów drożdży gorzelniczych metodami klasycznej mikrobiologii oraz technikami z zakresu inżynierii komórkowej. W pracowni Zakładu Technologii Spirytusu i Drożdży w Warszawie pod kierownictwem dr Anny Salek spośród wielu badanych szczepów drożdży wyizolowano dwa: D₂ – tetraploidalny, otrzymany metodą szoku alkoholowego oraz szczep As-4 – diploidalny, otrzymany metodą hybrydyzacji płciowej. Szczepy te charakteryzowały się: opornością na końcowe stężenie alkoholu – ok. 12% v/v, tolerancją na podwyższone ciśnienie osmotyczne środowiska fermentacji, zdolnością prowadzenia fermentacji w wysokim zakresie temperatur (38–39°C), zdolnością adaptacji do silnie ukwaszonego środowiska (pH ok. 3) oraz zwiększoną szybkością właściwą wytwarzania etanolu i bardzo dobrą energią fermentacji. Pracownia w Bydgoszczy aktywnie uczestniczyła w badaniach technologicznych w skali laboratoryjnej i mikrotechnicznej, a także w skali produkcyjnej – nad dynamiką i efektywnością procesu fermentacji tzw. „gęstych” zacierów skrobiowych bądź melasowych, a także w produkcji konwencjonalnej spirytusu – w typowych warunkach technicznych gorzelni rolniczej. Pozytywne wyniki prób technologicznych pozwoliły na wprowadzenie w roku 1992 nowych szczepów drożdży gorzelniczych D₂ i As-4, również w formie suszonej, do praktyki gorzelniczej.

Samodzielna Pracownia Gorzelnicza od szeregu lat prowadzi w sposób ciągły przechowywanie i systematyczne sprawdzanie przydatności technologicz-
nej aktualnie stosowanych w gorzelnictwie rolniczym przemysłowych szczepów drożdży.

Zainteresowanie się problematyką dotyczącą wykorzystania wywaru gorzelniczego w rolnictwie zaowocowało opracowaniem metody produkcji zmodyfikowanego wywaru żytniego, w celu jego zastosowania w tuczu trzody chlewnej. Założenia te zrealizowano zastępując wodę wykorzystywaną do rozparowania ziarna gorącym wywarem, prowadząc jego wielokrotną recyklację. Badania żywieniowe przeprowadzone przez Akademię Techniczno-Rolniczą w Bydgoszczy dowiodły, że zastosowanie zagęszczonego wywaru w tuczu trzody chlewnej pozwala na zaoszczędzenie ok. 34% mieszaniny treściowej. Z tego tytułu Pracownia bydgoska otrzymała Nagrodę Wojewódzką II stopnia za opracowanie i wdrożenie technologii wzbogacania wywaru gorzelniczego w białko i suchą masę oraz określenie jego efektywności w tuczu trzody chlewnej.

Dalsze prace w zakresie opracowania różnych sposobów zagospodarowania wywarów gorzelniczych zaowocowały opracowaniem technologii konserwacji wywaru przeznaczonego na paszę dla przeżuwaczy, pozwalającej na przechowywanie go przez okres co najmniej kilku miesięcy. Badania przeprowadzone pod kierownictwem mgr Małgorzaty Wolskiej w skali laboratoryjnej i półtechnicznej doprowadziły do opracowania parametrów technologicznych koniecznych do uzyskania dobrej kiszonki, w której podstawowym komponentem był wywar gorzelniczy (64–76%), obok melasy (17–30%) i słomy (6–7%).

Prowadzone przez Pracownię badania, mające na celu zagospodarowanie wywarów gorzelniczych na cele paszowe, nawozowe i inne – zaowocowały opracowaniem wielu instrukcji i ekspertyz oraz uzyskaniem Patentu Nr 193835.

W latach 90. Kierownik Pracowni prof. dr hab. inż. Bogusław Czupryński podjął się przeprowadzenia gruntownych remontów pomieszczeń laboratoryjnych, a prowadzonym pracom remontowym towarzyszyło stopniowe wyposażenie Pracowni w nowoczesną aparaturę naukowo-badawczą. Został zakupiony jeden z najnowszych wówczas chromatografów gazowych firmy Hewlett Packard serii 6890 do prowadzenia analizy produktów ubocznych w spirytusie. Podejmowane wówczas w Pracowni tematy badawcze były ukierunkowane na aktualne potrzeby gorzelnictwa i dotyczyły m.in. tematyki związanej z uzyskiwaniem lepszej jakości spirytusów surowych w warunkach gorzelni rolniczych. Podejmowane prace badawcze przez dr. inż. Grzegorza
Kłosowskiego odnosiły się m.in. do wyjaśnienia przyczyn powstawania ponadnormatywnej ilości zanieczyszczeń w produkowanych spirytusach.

W związku z zastosowaniem w niektórych gorzelnich technologii bezcieniowego uwalniania skrobi, Pracownia w Bydgoszczy we współpracy z Pracownią Biochemii IBPRS w Warszawie kierowaną przez doc. dr. hab. Bogdana Sieliwanowicza, podjęła temat sprawdzenia możliwości wykorzystania oraz efektywności zastosowania preparatu β-glukozydazy Aspergillus niger do usprawnienia procesu zacierania i fermentacji, poprzez poprawę wykorzystania cukrów i zmniejszenie lepkości zacierów.

Działania podejmowane przez prof. dr. hab. inż. Bogusława Czupryńskiego – ówczesnego Kierownika Pracowni, zmierzające do jeszcze lepszego wyposażenia Pracowni w wysokiej klasy aparaturę przyczyniły się do zakupu m.in. Spektrofotometru UV VIS firmy Pharmacia, Reowiskozymetru firmy Brookfielda DV III (slużącego do prowadzenia badań właściwości reologicznych oraz lepkości zacierów gorzelniczych), mikroskopów (w tym jeden firmy Olympus BX41), Spektrometru masowego, fermentora Bioengineering NLF22, Analizatora azotu Kjeltec 2200 Foss. Dało to możliwość wykonywania szeregu analiz dla przemysłu gorzelniczego i innych.

Obecnie prowadzonych jest wiele prac odnoszących się do: prowadzenia kontroli prawidłowości przebiegu procesu technologicznego produkcji spirytusu, analizy surowców gorzelniczych, badań czystości mikrobiologicznej pro-
cesu technologicznego, oceny jakości spirytusu uzyskiwanego w warunkach gorzelni rolniczych oraz sposobów utylizacji wywaru gorzelniczego.

Nowoczesne metody instrumentalne z wykorzystaniem kapilarnej chromatografii gazowej pozwalają kontrolować w warunkach laboratoryjnych Pracowni zarówno produkt końcowy fermentacji alkoholowej – uzyskany w gorzelniach rolniczych, jak również produkt po przeprowadzeniu rektyfikacji, czy też odwadnianiu spirytusu.

Podejmowane działania przez mgr inż. Katarzynę Kotarską, Kierownika Pracowni, mają na uwadze zwiększenie liczby prac badawczych wykonywanych na rzecz przemysłu gorzelniczego i rolnego, w ramach podpisywanych umów i wykonywanych eksperyty. Ponadto podjęte prace badawcze w skali laboratoryjnej mają na celu opracowanie warunków technologicznych prowadzenia procesu fermentacji metanowej i produkcji biogazu, przyczyniając się w ten sposób do utylizacji wywaru gorzelniczego. Prowadzone są również prace badawcze dotyczące rozkładu celulozy i poddaniu uzyskanych cukrów prostych fermentacji alkoholowej.

W Pracowni od lat prowadzone są w ciągu całego roku: kursy dla kierowników gorzelni rolniczych; dla aparatowych i zacierowych; szkolenia dla laborantów ośrodków naukowych i gorzelni rolniczych.

Pozostałą pracami prowadzonymi na rzecz przemysłu gorzelniczego, Pracownia prowadzi szeroką działalność publikacyjną, obejmującą zarówno artykuły zamieszczane w czasopismach krajowych i zagranicznych, jak również monografie, m.in. „Postępy w biotechnologii procesu fermentacji alkoholowej”, „Aktualne problemy gorzelnictwa rolniczego”. W dorobku Pracowni jest opracowanie od 1993 r. do 2011 r. około 151 publikacji, w tym: 16 artykułów w czasopismach zagranicznych (w większości z Listy Filadelfijskiej), 81 publikacji w czasopismach krajowych oraz 54 opublikowanych w materiałach konferencyjnych.

W Pracowni realizowane są działania związane z podnoszeniem kwalifikacji pracowników, którzy uczestniczą corocznie w różnego rodzaju szkoleniach, kursach i seminariach. Ponadto w Pracowni zostały podjęte prace naukowe dotyczące uzyskania wyższego stopnia naukowego przez pracowników – tytuł profesora, stopień doktora habilitowanego, tytuł doktora (dwie prace obronne, a jedna w trakcie realizacji).

W ramach działalności dydaktycznej w Pracowni są prowadzone praktyki studenckie oraz organizowane staże dla absolwentów uczelni wyższych.
Pracownicy Samodzielnej Gorzelniczej IBPRS w Bydgoszczy za swą działalność naukową zostali uhonorowani wieloma odznaczeniami, takimi jak: Brązowe, Srebrne i Złote Krzyże Zasługi, Nagrodą Wojewódzką za wdrożenia nowoczesnych technologii, Odznakami „Zasłużony pracownik rolnictwa” oraz „Zasłużony dla rolnictwa”, jak również wyróżnieni Medalami i Listami pochwalnymi.

Do największych osiągnięć Pracowni należy m.in.:

1. 1947 r. – wyselekcjonowanie i wprowadzenie do produkcji nowej rasy drożdży oznaczonej symbolem M₃.
2. 1964 r. – wyselekcjonowanie i wprowadzenie do produkcji nowej rasy drożdży oznaczonej symbolem B₄.
3. 1964 r. – wprowadzenie do produkcji nowego szczepu drożdży o symbolu Bc16a, odznaczającego się dużą odpornością na temp. ok. 38°C (ciepłoodporny).
4. 1992 r. – wprowadzenie nowych szczepów drożdży gorzelniczych D₂ i As-4, do praktyki gorzelniczej, w postaci suchej.
5. 1997 r. – wprowadzenie do praktyki gorzelniczej nowego enzymu β-glukozydazy A. niger do usprawnienia procesu zacierania i fermentacji, poprzez poprawę wykorzystania cukrów i zmniejszenia lepkości zacierów.
6. 2001 r. – opracowanie składu pianek poliuretanowych, z wykorzystaniem jako napełniacza wywarów gorzelniczych, Patent Nr 193835 z 2007 r.
7. 2008 r. – wdrożenie do praktyki gorzelniczej suchego preparatu drożdży amylolitycznych o symbolu I-7-43, Patent Nr 196731 z 2008 r.

Kierownicy Pracowni – od 1946 roku

1946–1950 – inż. Stanisław Wąsowicz
1950–1954 – mgr Janusz Trzebiński
1954–1969 – mgr Czesław Witkowski
1969–1989 – inż. Stefan Górny
2009 – mgr inż. Katarzyna Kotarska
Samodzielna Pracownia Gorzelnicza
Od lewej, góra: Bogusław Czupryński, Barbara Krause, Anna Kuczyńska, Katarzyna Kotarska, Aleksandra Roszak, Anna Świerczyńska, Roman Woźniak.
Dół: Wojciech Dziemianowicz
ODDZIAŁ KONCENTRATÓW SPOŻYWCZYCH
I PRODUKTÓW SKROBIOWYCH (OK)

Dyrektor
dr inż. Marian Remiszewski, prof. IBPRS

ul. Starołęcka 40, 61–361 Poznań

1) Stanowisko ds. Jakości (SJ)
mgr Iwona Błasińska

2) Zakład Technologii Koncentratów Spożywczych (ZK)
Kierownik Zakładu dr inż. Marian Remiszewski prof. IBPRS
→ Pracowania Technologii Koncentratów, Żywności Dietetycznej i Używek (PK)
 Kierownik dr inż. Małgorzata Kulczak
 mgr inż. Maria Jeżewska, mgr inż. Hanna Łuczak, mgr inż. Maria Białas, Małgorzata Brzozowska
→ Pracownia Analizy Żywności Skoncentrowanej, Przechowalnictwa i Opakowań (PAK)
 Kierownik dr inż. Krzysztof Przygoński
 dr inż. Zofia Zaborowska, dr inż. Elżbieta Wojtowicz, inż. Anna Kupka, Bożena Dziarska, Mariola Bruch
STO LAT Instytutu

→ Grupa Problemowa ds. Badań Sensorycznych
 Kierownik dr inż. Elżbieta Wojtowicz + mobilny 10 osobowy zespół
→ Stacja Doświadczalna (ZD)
 Kierownik inż. Eugeniusz Korbas
 Henryk Hoppel, Irena Jóźwiak, Adam Lewandowski, Piotr Łyskawa,
 Robert Marcinkiewicz, Andrzej Mytkowski, Ireneusz Lewandowicz,
 Marcin Manikowski, Ireneusz Klata, Marek Mager

3) Zakład Przetwórstwa Ziemniaków i Skrobi (ZS)
 Kierownik Zakładu dr Marian Mączyński
 → Pracownia Skrobi Modyfikowanych (PSM)
 Kierownik dr inż. Joanna Le Thanh-Blicharz
 dr Aleksander Walkowski, mgr Zofia Małyszek, mgr inż. Grażyna Szy-
 mańska, mgr inż. Ewa Voelkel
 → Pracowania Technologii Hydrolizatów Skrobiowych i Kontroli Jakości
 (PH)
 Kierownik dr inż. Leszek Jarosławski
 prof. dr hab. inż. Lucyna Słomińska
 mgr inż. Roman Zielonka, mgr inż. Marek Buszka, mgr inż. Genowefa
 Starogardzka, Jolanta Radke

4) Grupa Problemowa ds. Wdrożeń i Promocji (GW)
 Kierownik mgr inż. Ryszard Przygodzki
 mgr Renata Langner

5) Sekcja Informacji Naukowej i Organizacji Badań (SINO)
 Kierownik mgr Iwona Błasińska
 mgr inż. Hanna Łuczak, mgr Hanna Stróżycka

6) Sekcja Finansowo-Administracyjna (SFA)
 Kierownik Mirosława Jakubowska
 Ewa Mańczak, mgr Hanna Stóżycka, Anna Kosicka, Czesława Pińskowska,
 Hanna Manikowska, Teresa Dąbrowska

180
Oddział Koncentratów Spożywczych i Produktów Skrobiowych (OK)

Od lewej, góra: Ireneusz Klata, Henryk Hoppel, Robert Marcinkiewicz, Piotr Łyskawa, Andrzej Mytkowski, Anna Kupka, Lucyna Słomińska, Teresa Dąbrowska, Adam Lewandowski.

Od lewej, dół: Ryszard Przygodzki, Grażyna Szymańska, Elżbieta Wójtowicz, Marian Remiszewski, Mirosława Jakubowska, Marian Mączyński
Historia zaplecza naukowo-badawczego przemysłu ziemniaczanego 1947–2007

Początki jednostki badawczej przemysłu ziemniaczanego sięgają roku 1947, kiedy to z dniem 1 marca utworzono Dział Kontroli Technicznej w Centralnym Zarządzie Przemysłu Ziemniaczanego w Poznaniu. Głównym zadaniem powołanego działu była kontrola jakości produktów wytwarzanych przez podległe zakłady oraz organizowanie laboratoriów zakładowych i szkolenie ich personelu, a także ujednolicanie i unowocześnianie metod analitycznych i ustalanie wskaźników jakościowych.

31 marca 1955 r. zakres zadań Działu Kontroli Technicznej poszerzono o prace badawcze i na jego bazie utworzono Laboratorium Badawczo-Kontrolne Przemysłu Ziemniaczanego. Tematyka prac dotyczyła 3 zasadniczych kierunków:

1) badania nowych urządzeń technologicznych wprowadzanych do przerobu ziemniaków: urządzenia do wymywania skrobi (sita wirujące i wymywacze sitowe), urządzenia do oddzielania wody sokowej i zagęszczania mleczka krochalowego, hydrocyklony i multihydrocyklony do rafinacji krochmalu, odpiaszczacze mleczka,

2) problemu utylizacji soku komórkowego i ograniczenia ścieków krochmalniczych,

3) prace nad poprawą jakości produkowanych wyrobów i opracowanie nowych asortymentów.

W okresie tym efektem prac badawczych było między innymi wdrożenie produkcji glukozy krystalicznej metodą kwasową, krochmalu diastatycznie odbudowanego, krochmalu odbudowanego do deserów, prażynek ziemniaczanych, puree grochowego, skrobi modyfikowanej do wiertnictwa, flokulantu dla górnicztwa.

Z dniem 1 lipca 1962 r. przy Centralnym Laboratorium, decyzją Zjednoczenia Przemysłu Ziemniaczanego, utworzono Brążowy Ośrodek Informacji Naukowo-Technicznej i Ekonomicznej (BOINTE).

W roku 1973 utworzono stanowisko Naczelnego Inżyniera, które pełnili kolejno, dr Zenon Kosicki (1.08.73–30.11.75) i mgr inż. Zdzisław Kaliszan (1.06.77–31.10.90).

Z dniem 12 stycznia 1976 r. na stanowisko kierownika Centralnego Laboratorium powołany został dr Marian Mączyński. Dr Marian Mączyński przeszedł do CLPZ na mocy porozumienia stron z Instytutu Towaroznawstwa Akademii Ekonomicznej w Poznaniu. Pełnił tą funkcję do dnia 31 grudnia 2007 r. tj. do dnia włączenia CLPZ do Instytutu Biotechnologii Przemysłu Rolno-Spożywczego, czyli łącznie 32 lata, a obecnie nadal kieruje zespołem jako kierownik zakładu.

Struktura organizacyjna, czyli zespoły badawcze Centralnego Laboratorium, zawsze były odzwierciedleniem problemów branży ziemniaczanej, tj. jej 20 zakładów.

Coroczny plan prac zawierał prace zgłoszone przez zakłady oraz tematy zgłoszone przez Zjednoczenie.

Z dniem 1 stycznia 2008 r. decyzją Ministra Rolnictwa i Rozwoju Wsi, Centralne Laboratorium Przemysłu Ziemniaczanego została włączone w struktury Instytutu Biotechnologii Przemysłu Rolno-Spożywczego w Warszawie. Od tego czasu kontynuuje dotychczasową działalność jako Zakład Technologii Przetwórstwa Ziemniaków i Skrobi i wspólnie z Zakładem Koncentratów Spożywczych tworzą Oddział Koncentratów Spożywczych i Produktów Skrobiowych z siedzibą w Poznaniu, ul. Starołęcka 40.

Realizowane prace

Najważniejszym działem przetwórstwa ziemniaków jest krochmalnictwo. Dlatego też znaczną część prac dotyczyła zawsze problemów z tym związanych, w tym dotyczących zwiększenia uzysku skrobi, poprawy jej jakości, zmniejszenia ilości używanej wody, ograniczenia ilości ścieków, zagospodarowania odpadów, zmniejszenia zużycia energii. Efektem prac prowadzonych wspólnie z zakładami było zmniejszenie zużycia wody technologicznej z 8 do 0,8 m³ na tonę przerabianych ziemniaków, wzrost wskaźnika uzysku skrobi o ok. 15%, wzrost wskaźnika uzysku skrobi najwyższej jakości z 60 do 95% ogólnej ilości wyprodukowanej skrobi. Wprowadzone w technologii przerobu wirówki pełnopłaszczowe umożliwiły zarówno zmniejszenie ilości wody technologicznej, ale również odzysk białka z wód sokowych. Zastosowanie do wymywania skrobi i rafinacji mleczka krochmalowego hydrocyklonów znacznie zmniejszyło zużycie energii elektrycznej.

Z krochmalnictwem ściśle wiązały się problemy związane z utylizacją odpadów i ścieków. Kierunki prac zmierzały zarówno do zmniejszenia ilości powstających ścieków jak i ich utylizacji. Prowadzone prace doprowadziły do

Ze zmieniającego się składu zespołu badawczego na podkreślenie zasługi pracy mgr inż. Grzegorza Urbaniaka, chemika-technologa, który przepracował w zespole zajmującym się fizykochemiczną modyfikacją skrobi ponad 30 lat i miał udział w większości opracowanych i wdrożonych technologii modyfikacji skrobi.

Dorobkiem pracowni było także uzyskanie wielu patentów, a wpływy z opłat licencyjnych od wdrożonych technologii stanowiły przez kilkanaście
lat ponad 50% wpływów Laboratorium. Sukcesy we wdrażaniu opracowanych technologii zapewniał mgr inż. Piotr Gzyl.

Zespół ten zajmował się opracowywaniem nowych i unowocześnianiem istniejących technologii z zakresu hydrolizatów skrobiowych, a dotyczących produkcji: maltodekstryn, syropów skrobiowych kwasowych i enzymatycznych, oraz glukozy krystalicznej, a także karmelu spożywczego.

Z zakresu hydrolizatów skrobiowych:
→ opracowano dokumentacyjnie oraz wdrożono do praktyki przemysłowej poszczególne stacje produkcyjne w zakładach produkujących syrop skrobiowy (kwasowej hydrolizy skrobi metodą ciągłą, enzymatycznej hydrolizy skrobi metodą ciągłą, rafinacji i filtracji hydrolizatu, zagęszczania hydrolizatu w trójdzielowych wyparkach cienkowarstewkowych, magazynowania syropu),
→ opracowano technologię i uruchomiono produkcję glukozy krystalicznej, najpierw metodą kwas-enzym, a następnie metodą enzym-enzym,
→ opracowano technologię i uruchomiono oddział doświadczalno-produkcyjny maltodekstryn.

Zespół zaproponował, opracował i uruchomił gorzelnię, wykorzystującą odpady powstające w zakładzie ziemniaczanym, w której zastosowano własnej konstrukcji, pierwszy w Polsce parnik do ciągłego parowania skrobi gorszej jakości i odpadów ziemniaczanych.

Prace prowadzone w ramach tej tematyki doprowadziły do wdrożenia do praktyki przemysłowej linii do ciągłego smażenia i pakowania przekąsek ziemniaczanych oraz linii do produkcji suszu, stosowanego do wytwarzania smażonych przekąsek ziemniaczanych.

Dorobek zespołu obejmuje ok. 30 patentów oraz wiele nagród (za wdroże-
nia przemysłowe opracowanych technologii), w tym nagrody Ministra Prze-
mysłu Spożywczego i Skupu, dyplomy Ministra Nauki i Szkolnictwa Wyższe-
go, nagrody NOT za wybitne osiągnięcia w dziedzinie techniki oraz medale za
patenty prezentowane na międzynarodowych targach wynalazczości.

Badania odmian ziemniaków, ich przechowywania
oraz przetwórstwa na wyroby spożywcze

W latach 1970–1980 ważne miejsce w pracach CLPZ miały tematy związane
z zapewnieniem do przerobu odpowiednich odmian ziemniaków na poszcze-
gólne kierunki przetwórstwa. Przede wszystkim odmian wysokoskrobiowych
i o możliwie wcześniejszym terminie zbioru a także odmian jadalnych dla rozwija-
nego przetwórstwa na wyroby suszone – kostka ziemniaczana, grys, susz na
puree. Badania prowadzono we współpracy z Instytutem Ziemniaka w Boni-
nie, który wykorzystywał wyniki w pracach hodowlanych nad nowymi roda-
mi i odmianami. Osobnym zagadnieniem były prace nad sposobami przechowy-
wania ziemniaków. Dzięki tym pracom rozpowszechniono w praktyce
stosowanie metody przechowywania w pryzmach mechanicznie wietrzonych
w miejsce dotychczas stosowanego kopcowania. Zespołem kierowali kolejno
mgr Stanisław Kujawa, mgr Jacek Maćkowiak i mgr Ryszard Parus.

Wykorzystując rozwój produkcji wyrobów suszonych z ziemniaków Cen-
tralne Laboratorium podjęło prace nad przygotowa-
nia szeregu gotowych potraw. Opracowano i wdrożono mieszanki na placki
ziemniaczane, kluski, knedle, pyzy, snaksy. Ich autorem był zespół kierowany
przez mgr Krystynę Rubkiewicz, a dalej mgr Irenę Topolską.

Bardzo istotną rolę w działalności branży ziemniaczanej spełniała Pracow-
nia Kontroli Jakości i Normalizacji Centralnego Laboratorium. Początkowy
okres działalności pracowni skupiał się na organizacji laboratoriów zakłado-
wych, szkoleniem ich personelu, ujednolicaniem metod analitycznych, ustala-
niu wskaźników jakościowych produktów, ale podstawowym zadaniem była
systematyczna kontrola jakości wyrobów przemysłu ziemniaczanego. Na po-
stawie wyników badań dokonywano okresowej oceny pracy laboratoriów za-
kładowych, wprowadzano nowe i udoskonalano stosowane metody analitycz-
ne. Wyniki badań wykorzystywano w pracach normalizacyjnych w ramach
pełnionej funkcji branżowego ośrodka normalizacyjnego. W pracowni po-
wstała większość norm branżowych dotyczących metod kontroli jakości wy-
robów i metodkontroliprocesów technologicznychNajwiększy wkład wza-
kresdziałalności pracowni wniosłamgr Halina Skwara, organizator pracowni
i jej kierownik do 1989, oraz jejwspółpracownicamgr Halina Remlein która

Przez wiele lat w składCentralnego Laboratoriumwchodził Branżowy
OśrodekInformacjiTechnicznej iEkonomicznej. Ośrodek gromadził i rozpo-
wsczechniał w formieBiuletynuInformacyjnegowszelkie materiały z dziedziny
przetwórstwa ziemniaków i skrobi i dziedzin pokrewnych, a rzecznik patento-
wy, poza opracowywaniem zgłoszeń patentowych realizował zadanie określo-
ne w zadaniach resortowych jako przeciwdziałanie obcej blokadzie patento-
wej. W latach 1978–1979, w ramach konkursuMinisterstwa Przemysłu
Spożywczego i Skupu ośrodek dwukrotnie uzyskał miano najlepszego środka.
Ośrodkiem kierowalimgr Hilary Bielarz, a następnie mgr inż. BogumilaRа-
tajczak.

**Historia zaplecza naukowo-badawczego
przemysłu koncentratów spożywcych 1950–2002**

Polski przemysł koncentratów spożywczych należy do stosunkowo młodych. Produk
cja wyrobów określanych mianem koncentratów została zapoczątkowa-
naw Polsce w latach dwudziestych XX wieku, lecz stanowiła znikomy procent
wytworzanej żywności. Produkowane wówczas przyprawy do zup i potraw,
koncentraty zup, makarony oraz kawa zbożowa nie odgrywały większej roli na
rynku żywnościowym. Rozwój przemysłu koncentratów spożywczych jako
branży przemysłu spożywczego nastąpił dopiero od 1945 r. Wzrost zaintereso-
wania koncentratami jako żywnością „szybką” w miarę „wygodną” i stosunko-
wo trwałą następował wraz ze zmieniającymi się warunkami życia ludności.

W branży koncentratów produkuje się kilkaset różnych wyrobów objętych
m.in. następującymi grupami asortymentowymi: koncentraty obiadowe (zup,
sosów, drugich dań), koncentraty śniadaniowe, deserów, ciast, napojów, lodów
w proszku, przyprawy do potraw, kawy zbożowe, ekstrakty kaw naturalnych
i zbożowych, dodatki do ciast, odżywki mleczno-węglowodanowe, kleki i kasz-
k dla niemowląt i dzieci, żywność bezglutenowa, dietetyczna, susze warzywne,
makarony, majonezy, surowce i półprodukty instant, suszone ekstrakty i inne.

Bogactwo asortymentowe koncentratów spożywczych oraz wielorakość stos-
wanych technik i technologii ich wytwarzania sprawia, że przemysł koncen-
tratów spożywczych należy do jednej z najbardziej różnorodnych branż przemysłu spożywczego w Polsce. W związku z powyższym zaistniała konieczność zorganizowania zaplecza naukowo-badawczego, które realizowałooby prace badawcze i doświadczalne pozwalające na intensywny, a zarazem wielokierunkowy rozwój branży. Zaplecze badawcze Przemysłu Koncentratów Spożywczych przechodziło kilka kolejnych etapów rozwoju swej działalności jak i przekształceń organizacyjnych.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Czerwiec 1982</td>
<td>Przyłączenie do Centralnego Laboratorium Przemysłu Koncentratów Spożywczych Branżowego Ośrodka Informatyki i Organizacji Pracy. Ośrodek w ramach struktury CLPKS działał do 1992 r., a następnie przekształcił się w Spółkę INPOZ.</td>
<td></td>
</tr>
<tr>
<td>Lipiec 1982</td>
<td>Uzyskanie statusu Jednostki naukowo-badawczej podlegającej bezpośrednio Ministerstwu Rolnictwa i Gospodarki Żywnościowej.</td>
<td></td>
</tr>
</tbody>
</table>
Budowa nowego budynku administracyjno-biblioteczno-laboratoryjnego

IX 1993 – XII 1994

Budowa nowego budynku administracyjno-biblioteczno-laboratoryjnego i budynku dla Zakładu Doświadczalnego oraz kompleksowa modernizacja budynku laboratoryjnego.

Przyłączenie Centralnego Laboratorium Przemysłu Koncentratów Spożywczych do Instytutu Biotechnologii Przemysłu Rolno Spożywczego w Warszawie (IBPRS)

Styczeń 2003

Przyłączenie Centralnego Laboratorium Przemysłu Koncentratów Spożywczych do Instytutu Biotechnologii Przemysłu Rolno Spożywczego w Warszawie (IBPRS) na podstawie Rozporządzenia Ministra Rolnictwa i Rozwoju Wsi z dnia 11 grudnia 2002 roku (Dz.U. nr 233 poz. 1961 z 2002 r.). CLPKS zostało przekształcone w Oddział Koncentratów Spożywczych IBPRS.

Przyłączenie Centralnego Laboratorium Przemysłu Ziemniaczanego (CLPZ) do IBPRS

Styczeń 2008

Przyłączenie Centralnego Laboratorium Przemysłu Ziemniaczanego (CLPZ) do IBPRS na podstawie Rozporządzenia Ministra Rolnictwa i Rozwoju Wsi z dnia 19 grudnia 2007 roku (Dz.U. nr 247 poz. 1837 z 2007 r.). CLPZ przyłączono do Oddziału w Poznaniu. W ramach powstałego Oddziału Koncentratów Spożywczych i Produktów Skrobiowych działa:

- Zakład Technologii Koncentratów Spożywczych oraz
- Zakład Przetwórstwa Zimniaków i Skrobi.

Kierownicy i dyrektorzy

Laboratorium Badawcze oraz Centralne Laboratorium Przemysłu Koncentratów Spożywczych

- **1950–1953** – mgr Antoni Świerczyński
- **1954–1968** – dr Zdzisław Pazoła (samodzielny pracownik naukowo-badawczy)
- **1968–1972** – dr Włodzimierz Słowiński (samodzielny pracownik naukowo-badawczy)
- **1977–1981** – doc. dr Włodzimierz Słowiński
- **1982–1983** – mgr Stanisław Janiec
- **1990–1991** – prof. dr Włodzimierz Słowiński
- od **1993** – doc. dr inż. Marian Remiszewski
 (od grudnia 2010 r. prof. nadzw.)
Zespoły naukowo badawcze w latach 1950–2002

W okresie działalności Jednostki zakres prowadzonych prac badawczych ulegał modyfikacjom w zależności od potrzeb przemysłu koncentratów spożywczych i w związku z tym zmieniał się układ organizacyjny CLPKS oraz nazwy i powiązania między komórkami badawczymi.

Należy wyróżnić najważniejsze kierunki badawcze realizowane w pracowniach, zespołach, sekcjach itp. oraz byłych kierowników komórek organizacyjnych mających istotny wpływ na rozwój tych kierunków. Wymienieni poniżej kierownicy przeważnie zajmowali się szeroką tematyką badawczą w ramach mobilnych zespołów międzypracownianych, ale w niniejszym opracowaniu wymienieni zostali tylko przy swojej głównej tematyce:

→ technologie hydrolizatów i koncentratów białkowych: prof. dr Henryk Świtek,
→ technologie koncentratów witaminowych: prof. dr Włodzimierz Slowiński, dr inż. Jadwiga Cieślak,
→ analityka żywności: dr inż. Janina Sułkowska,
→ normalizacja: mgr inż. Iwona Skorupska, mgr inż. Bogumiła Tietz,
→ technologie koncentratów spożywczych i żywności dietetycznej: dr inż. Jadwiga Cieślak, mgr inż., Anna Orzechowska,
→ technologie odżywek dla dzieci: dr Zofia Pordąb,
→ technologie używek (kawa, herbata): dr Achila Stranc,
→ mikrobiologia i biosynteza: mgr Janina Michnikowska, mgr inż. Janina Janyga,
→ opakowania i przechowalnictwo: mgr inż. Jerzy Piechanowski, mgr inż. Stanisława Bańczak,
→ inżynieria i aparatura procesów technologicznych: dr inż. Witold Hetmański, inż. Jerzy Szumała,
→ technologie suszarnicze: dr inż. Władysław Promiński,
→ badania w skali półtechnicznej i technicznej: inż. Stefan Sujak, mgr inż. Franciszek Kwiatkowski,
→ informacja naukowo-techniczna: mgr Jadwiga Gulczyńska, mgr Danuta Balcerék,
→ informatyka: mgr Jan Weber.
Szczególną uwagę należy poświęcić profesorowi Zdzisławowi Pazołę (1927–1987)

W styczniu 1977 r. przeniósł się do pracy w Katadrze Technologii Żywienia Człowieka Akademii Rolniczej w Poznaniu. 13 czerwca 1979 roku Rada Państwa nadała mu tytuł naukowy profesora nadzwyczajnego.

Prof. Z. Pazola był inicjatorem i realizatorem większości prac technologicznych wykonywanych w latach jego działalności w CLPKS, a następnie wdrożonych do praktyki przemysłowej.

Dorobek publikacyjny obejmuje 250 różnego rodzaju opracowań, w tym kilku monografii dotyczących technologii i techniki koncentratów spożywczych. Profesor był także autorem ponad 20 patentów. Za swoje osiągnięcia otrzymał wiele znaczących nagród, odznaczeń i wyróżnień.
Działalność naukowo-badawcza placówki przed utworzeniem Centralnego Laboratorium Przemysłu Koncentratów Spożywczych (1951–1961)

1. Okres 1951–1958

Prace naukowo-badawcze w tych latach, realizowane przez 8 osobowy zespół Laboratorium Badawczego przy Poznańskich Zakładach Koncentratów Spożywczych, koncentrowały się na dwóch zasadniczych problemach: technologii koncentratów witaminowych i technologii hydrolizatów białkowych.

Rozpracowano sposób otrzymywania koncentratu witaminy C z owoców dzikiej róży, z igliwia sosny, owoców czarnej porzeczki, rokitnika. W 1952 r. za opracowanie i uruchomienie produkcji koncentratu witaminy C z owoców dzikiej róży w proszku otrzymano Zespołową Nagrodę Państwową III Stopnia.

Prace związane z otrzymywaniem hydrolizatów białkowych obejmowały hydrolizę ciśnieniową różnych surowców białkowych jak: kazeina, lubin, albumina mleczna, śruty poekstrakcyjna oraz drożdże.

Na uwagę zasługuje ponadto opracowanie technologii otrzymywania ekstraktu kawy naturalnej w proszku. Ekstrakt ten został wdrożony do produkcji w Poznańskich Zakładach Koncentratów Spożywczych pod nazwą „Marago” i spotkał się z dużym uznaniem konsumentów. Praca ta została wyróżniona nagrodami zespołowymi: Nagrodą Ministra i Nagrodą Miasta Poznania w 1960 r.

2. Okres 1959–1961

Po nawiązaniu kontaktów z innymi zakładami przemysłu koncentratów spożywczych w Gdańsku, Gorzowie, Łodzi, Kaliszu, Włocławku i Skawinie, roszerszono zakres prac badawczych.

Rozpoczęto produkcję doświadczalną krystalicznego karotenu z marchwi oraz próby barwienia makaronu karotenem.
Opracowano sposób otrzymywania deserów błyskawicznych. Sprawdzenie także możliwości zastosowania tworzyw termozgrzewalnych, do pakowania aromatów.

Działalność naukowo-badawcza
Centralnego Laboratorium Przemysłu Koncentratów Spożywczych
(1962–2002)

Z momentem utworzenia Centralnego Laboratorium Przemysłu Koncentratów Spożywczych (1.01.1962) nastąpił intensywny rozwój placówki z równoczesnym dalszym rozszerzeniem zakresu działalności, który sukcesywnie w miarę upływu lat zmieniał się i był uzależniony od aktualnych potrzeb branży i gospodarki narodowej.

1. Lata 1962–1965

W tych właśnie latach nastąpił najbardziej intensywny rozwój placówki. Zwiększyła się liczba zatrudnionych (z 19 do 40 osób), utworzono nowe pracownie naukowo-badawcze, zorganizowano zaplecze doświadczalne, powiększył się znacznie zasób materialny placówki w postaci aparatury, urządzeń oraz ilości zgromadzonych zbiorów bibliotecznych.

Tematyka prac naukowo-badawczych w tym okresie obejmowała swoim zasięgiem zainteresowanie całego już przemysłu koncentratów spożywczych. Do ważniejszych prac zaliczyć należy opracowanie sposobu otrzymywania kwasu glutaminowego z hydrolizatu śruty sojowej, koncentratu lizyny z innych hydrolizatów białkowych oraz technologie preparatu aminokwasowego pozbawionego fenyloalaniny dla dzieci chorych na fenyloketonurię.

W 1962 r. zorganizowany został Branżowy Ośrodek Informacji Naukowej Technicznej i Ekonomicznej /BOINTE/, którego zadania polegały na poszukiwaniu, gromadzeniu i rozpowszechnianiu źródłowych materiałów informacyjnych z zakresu chemii i technologii koncentratów spożywczych, zagadnień żywienia, mikrobiologii żywności i opakowalnictwa.

Po roku 1965 nastąpił okres stabilizacji organizacyjnej i kadrowej Centralnego Laboratorium.

Prowadzono intensywne badania w zakresie lyofilizacji produktów spożywczych, a w szczególności dotyczyły one określenia ubytków witaminy C w lyofilizowanej żywności.

Opracowano technologię kakao typu instant, technologię otrzymywania ekstraktu kawy zbóżowej w proszku, jak również technologię szybkogotującego się ryżu i nasion strączkowych (fasoli i grochu) oraz technologię i receptury konserw dla niemowląt od 6-go miesiąca życia. Wszystkie wymienione prace zostały nagrodzone (nagrody II i V stopnia) w krajowym konkursie „O jakość wyrobów przemysłu spożywczego w 1970 r.

Opracowano nowe asortymenty sypkich odżywek i deserów dziecięcych na bazie przecierów warzywnych i owocowych suszonych metodą walcową, wzbogaconych w witaminy i sole mineralne.

3. Lata 1971–1975

W tym okresie nastąpiło powiększenie powierzchni użytkowej Centralnego Laboratorium przez budowę nowego pawilonu oraz zaadaptowanie dodatkowych pomieszczeń, a zatrudnienie już od 1970 roku wzrosło do ok. 60 osób.

Opracowano szereg nowych mieszanek mleczno-zbożowych dla niemowląt. W 1975 r. odżywka Bebiko I otrzymała II nagrodę w Plebiscycie Najlepszych Twórców Postępu Technicznego Wielkopolski pod hasłem „Złoty Suwak”.

Opracowano receptury i technologię różnych asortymentów odżywki niskokalorycznej „Minimal”, która uzyskała IV nagrodę w Plebiscycie „Złoty Suwak”.

Udoskonalono proces produkcji ekstraktu kawy zbóżowej Inka poprzez zastosowanie preparatów enzymatycznych i kontrolę pH w procesie ekstrakcji. Zapoczątkowano produkcję ekstraktów kawowych rozwijając ją do poziomu największego na świecie. Ekstrakty kaw zbóżowych były eksportowane.

Od 1976 r. Centralne Laboratorium uczestniczyło w programie PR4 pt.: „Optymalizacja produkcji spożywania białka”.

Opracowano szereg produktów i technologii należących do żywności specjalnej, a mianowicie: technologie i receptury koncentratów deserów i napojów dietetycznych/niskokalorycznych, nowe asortymenty trwałego pieczywa dietetycznego w szczególności pieczywa dla chorych na cukrzycę oraz żywność specjalną dla sportowców, osób intensywnie pracujących jak i koncentraty dla potrzeb turystyki i rekreacji.

Kolejne omawiane lata działalności przypadły w trudnym okresie gospodarczym kraju, co wpłynęło niekorzystnie na dalszy rozwój placówki i spowodowało zmianę profilu prowadzonych prac naukowo-badawczych. Zmniejszyła się liczba badań długofalowych i perspektywicznych, ustępując miejsca pracom krótkoterminowym, zaspakajającym bieżące potrzeby zakładów produkcyjnych branży.

Od 1982 r. w wyniku kolejnej reorganizacji, do Centralnego Laboratorium Przemysłu Koncentratów Spożywczych został przyłączony Branżowy Ośro-
dek Informatyki i Organizacji Pracy co spowodowało powiększenie zatrudnienia do ponad 100 osób.

Za opracowanie technologii preparatu o smaku mięsa pieczonego uzyska-no w 1983 r. Nagrodę Zespołową II stopnia Ministra Rolnictwa i Gospodarki Żywnościowej.

W tym samym okresie rozpoczęto także cykl badań nad zastosowaniem krajowej soi w produkcji koncentratów – opracowano technologię otrzymywania soi o krótkim czasie gotowania, „orzeszków sojowych”, mąki sojowej błyskawicznej, koncentratów obiadowych, koncentratów ciast, deserów i dodatków do potraw.

W omawianych latach znaczny nacisk w badaniach położony był na żywność dla dzieci.

Opracowano skład i przebadano wartości żywieniowe humanizowanego mleka Bebiko 0 – kolejnego produktu dla żywienia niemowląt dzieci.

W tym czasie wykonywano wiele zadań inżynieryjnych na zapotrzebowanie przemysłu, m in.: projekt i wykonanie prototypowej linii do otrzymywania granulowanych panierów,
→ założenia do unowocześnienia suszarki rozpyłowej SR-250,
→ dokumentację i skonstruowano prototypowy mlyn igłowy do rozdrabnia-
ninga np. cukru,
→ założenia do wykonania prototypowego ekstraktora ciągłego,
→ zaprojektowano i wykonano prototypową krajalnicę – nacinarkę do wa-
rzyw.

Istotnymi zagadnieniami w badaniach była żywność dietetyczna: odżywki ni-
skocaloryczne z błonnikiem oraz niskocholesterolowe koncentraty spożywcze.

Opracowano także metody pakowania i dokonano doboru materialów
opakowaniowych dla różnych koncentratów spożywczych oraz metodę otrzy-
mywania ekstraktu kawy naturalnej „ASTRA” o zmniejszonej zawartości sub-
stancji drażniących dla przewodu pokarmowego.

W dniu 13 listopada 1991 roku w wyniku pożaru (włamanie i podpalenie)
spłonął całkowicie budynek, który mieścił m.in. Branżowy Ośrodek Informa-
cji Naukowej, Technicznej i Ekonomicznej wraz z biblioteką i ośrodkiem kom-
puterowym oraz działem księgowości, ekonomicznym i pomieszczeniami dy-
rekcji. Stracono prawie cały księgozbiór oraz większość istotnych dokumentów,
a warunki lokalowe na 3 lata uległy znaczącemu pogorszeniu.

We wrześniu 1993 roku rozpoczęto budowę budynku administracyjno-biblio-
teczno-laboratoryjnego oraz budynku zakładu doświadczalnego oraz modern-
izację budynku laboratoryjnego. Wszystkie te prace zakończono do grudnia
1994 roku.

Od tego czasu na działce powierzchni 3470 m² Centralne Laboratorium
Przemysłu Koncentratów Spożywczych dysponowało 3 budynkami o łącznej
powierzchni użytkowej ponad 2000 m², zapewniając bardzo dobre warunki
lokalowe.

Bardzo prestiżowym wydarzeniem było uczestnictwo CLPKS-u w kilku-
miesięcznej Międzynarodowej Wystawie EXPO 93 w Taejon w Korei Połu-
dniowej, na której laboratorium prezentowało swoje innowacyjne rozwią-
zania.

W 1994 roku rozpoczęto realizację tematu EU 1242 DIAMIX „New Po-
wderCakeMixes for Diabetics – Diamix” w europejskim programie Eureka.
Temat wykonywano w latach 1994–1997, wspólnie z firmą Ed.HassNahrmit-
tel GmbH z Austrii oraz firmą SME Partner AB ze Szwecji.
Opracowano ciasta dla chorych na cukrzycę z udziałem acesulfamu K, poliglukozy, izomaltitulu i laktitulu.

Ważną dla kontaktów międzynarodowych i krajowych oraz ze względu na dostęp do światowych zasobów informacji było połączenie z siecią INTERNET poprzez miejską sieć naukową POZMAN.

W 1995 roku wprowadzono nowe logo CLPKS-u „KONCLAB” oraz zarejestrowano je Urzędzie Patentowym jako znak zastrzeżony.

W Przedsiębiorstwie „Delekta” we Włocławku rozpoczęto pilotową produkcję aglomerowanych napojów musujących opracowanych w CLPKS KONCLAB.

Rozpoczęto także realizację grantu badawczego nr 5 S30702894 pt.: „Badania nad opracowaniem odżywek dla żywienia enteralnego”.

8. Lata 1999–2002

Omawiany okres był czasem przygotowawczym do planowanego połączenia się Centralnego Laboratorium z Instytutem Biotechnologii Przemysłu Rolno-Spożywczego.

W ramach współpracy naukowej z Japonią realizowano badania w tematach:
→ „Opracowanie składu i technologii żywności dla niemowląt i dzieci z wadami metabolicznymi” z Kyoto University,
→ „Opracowanie żywności funkcjonalnej” – z Tokyo Gakugei University, Faculty of Education, Food Science Laboratory w Tokio oraz Department of Bioscience and Chemistry, Faculty of Agriculture Hokkaido University w Sapporo.

W zakresie technologii odżywek prowadzono badania dotyczące: wykorzystania białka sojowego do produktów o niskiej alergiczności; wzbogacania koncentratów spożywczych w wapń i witaminy; koncentratów do stosowania w profilaktyce chorób serca; wykorzystania prebiotyków w koncentratach o wysokich walorach zdrowotnych; zmian zawartości produktów utleniania cholesterolu w trakcie procesu suszenia rozpylowego.

W oparciu o program wykonawczy współpracy naukowo-technicznej PRO:44/1998 w ramach tematu „Badania nad nowymi metodami przetwarzania surowców roślinnych, uwzględniającymi zachowanie aktywnych substancji biologicznych w gotowym produkcie” nawiązano długoletnią współpracę z Laboratorium Biochemii i Biotechnologii Roślin Narodowej Akademii Nauk Białorusi w Mińsku.
W omawianych latach opracowano także: technologię i skład zup instant typu „gorący kubek”; dokumentację niezbędną do uruchomienia odżywki do żywienia enteralnego pn. DIETALEK; technologię suchego koncentratu cykorii.

Prowadzono również badania związane z przetwórstwem kawy naturalnej, a opracowane przez CLPKS technologie kawowe opatentowano w UP RP i wdrożono w Poznańskiej Palarni Kawy „Astra”.

W 1999 r. zakład ten uzyskał następujące nagrody: za kawę Astra – II miejsce na Targach Zdrowej Żywności w Toruniu, a za kawę Cappuccino – konsumencki znak jakości Q oraz znak Dobre bo Polskie.

W omawianym okresie realizowano kilka tematów z zakresu inżynierii procesów technologicznych dotyczących: otrzymywania ekstraktów herbaty w płynie w oparciu o własny patent; „Opracowania technologii ciągłej sterylizacji (dekontaminacji) przypraw oraz urządzenia do ciągłej sterylizacji” – za którą zespół pracowników CLPKS uzyskał nagrodę Ministra Rolnictwa i Rozwoju Wsi; „Opracowania technologii makaronu instant”, która została laureatem konkursu „Polski Produkt Przyszłości”.

W związku z planowanym włączeniem CLPKS do IBPRS w IV kwartale 2001 r. zmniejszono zatrudnienie o około 14% do 37 etatów, w tym 10 naukowych i 3 badawczo-technicznych.

Działalność Zakładu Doświadczalnego

Już w początkowej fazie działalności zaplecza naukowo-badawczego stwierdzono konieczność posiadania odpowiednio wyposażonych stacji doświadczalnych. Miały one stanowić uzupełnienie oraz podbudowę badań laboratoryjnych, pozwalając na sprawdzenie wyników w większej skali i odniesienie ich do wymagań przemysłowych.

Począwszy od lat pięćdziesiątych działały następujące stacje doświadczalne otrzymywania: karotenu z marchwi (1951); glutaminianu sodu (1954); preparatu pektolitycznego (1954); karotenu uzyskanego przy pomocy pleśni (1963); liofilizacji (1963); ogólno-technologiczna wyposażona w szereg urządzeń ćwierć i półtechnicznych (1965/66). Wymienione stacje organizowane były dla wykonania określonych zadań i wyposażone w aparaturę przystosowaną do specyficznych badań. Spełniały bardzo ważną rolę w prowadzonych pracach, poczynając od wprawy i likwidacji. Jedynie stacja ogólno-technologiczna, ze względu na swą uniwersalność zachowała swój niezmieniony charakter do
Oddział Koncentratów Spożywczych i Produktów Skrobiowych (OK)

chwili obecnej. Przy instalowaniu i kompletowaniu urządzeń i aparatury bra-
no pod uwagę potrzeby przemysłu w zakresie opracowywania nowych i mo-
dysfikowania istniejących procesów technologicznych. Cechą charakterystycz-
ną posiadanych zestawów aparatury jest logiczny ich układ pozwalający na
wykonywanie różnorodnych operacji jednostkowych. Ponadto prawidłowo
dobra skala urządzeń ułatwia przenoszenie wyników uzyskiwanych w skali
ćwierć technicznej na urządzenia przemysłowe.

W Zakładzie Doświadczalnym poza pracami badawczymi prowadzono
małotonażową produkcję różnych półproduktów i wyrobów gotowych np.
aromat z łuski kakaowej dla przemysłu tytoniowego, ekstraktów płynnych
(syrop) lub suchych (proszek) herbat czarnych, owocowych i mieszank zioło-
wych, naturalnej kawy prażonej, koncentratów napojów w proszku, beztłusz-
czowych makaronów instant.

Pomieszczenia posiadane przez OK

Jednostka zlokalizowana jest na jednej działce o powierzchni 3470m²,
w trzech obiektach: budynek administracyjno-biblioteczno-laboratoryjny,
hala doświadczalna, budynek laboratoryjny o łącznej powierzchni użytkowej
ponad 2000 m². Pomieszczenia te gwarantują dobre warunki działalności,
zapewniają właściwą komunikację między poszczególnymi komórkami orga-
nizacyjnymi. Ze względu na bliskość lokalizacji Stacji Doświadczalnej w sto-
sunku do pracowni badawczych, można na bieżąco prowadzić prace w skali
ćwierć technicznej, półtechnicznej i technicznej, umożliwiające sprawdzenie
wyników badań otrzymanych w skali laboratoryjnej.

Ważniejsze wyposażenie OK

OK IBPRS jest dobrze wyposażony w laboratoryjną aparatę specjalistyczną.
Stacja Doświadczalna wyposażana jest w urządzenia w skali od ćwierć tech-
nicznej do technicznej, na których prowadzone są badania symulujące jed-
nostkowe procesy technologiczne, m.in. takie jak: wytwornice pary, młynki
i rozdrabniacze, przesiewacze, pakowarki, homogenizator, urządzenia filtra-
cyjne, podgrzewacze, aglomeratory, mieszarki, ekstraktory, ekstrudery, wy-
parki próżniowe, wirówki, suszarki (różne rodzaje), warnik, reaktory.

Oddział posiada pomieszenia specjalistyczne z monitoringiem i regulacją
warunków: przechowalnicze i pokój sensoryczny.
Obecna działalność

Działalność naukowo-badawcza

→ Opracowywanie technologii i receptur koncentratów spożywczych, żywności specjalnej i dietetycznej, w zakresie polepszania walorów zdrowotnych i smakowych kaw naturalnych i zbożowych, metod preparowania surowców przeznaczonych do wytwarzania koncentratów, opracowywanie technologii funkcjonalnych składników żywności.
→ Badania nad zastosowaniem nowych opakowań giętkich i technik pakowania.
→ Badania nad sposobami modyfikacji skrobi w celu otrzymywania skrobiowych zagęstników spożywczych, środków zagęszczających i teksturow twórczych oraz skrobiowych środków pomocniczych dla różnych gałęzi przemysłu.
→ Badania nad optymalizacją procesów enzymatycznej hydrolizy skrobi m.in. dla uzyskania syropów skrobiowych o różnej zawartości węglowodanu dominującego.
→ Opracowywanie nowych metod analitycznych przeznaczonych do oceny zawartości substancji bioaktywnych w produktach spożywczych z wykorzystaniem chromatografii gazowej i cieczowej.

Działalność wdrożeniowa

Oferta technologii Zakładu Technologii Koncentratów Spożywczych:
→ koncentraty: obiadowe, ciast i pieczywa, deserów, napojów (w tym aglomerowane),
→ koncentraty dietetyczne: bezglutenowe (chleby, ciasta, makaron, kluski, desery i in.), ciasta i desery bez cukru, mieszanki wspomagające odchudzanie, napoje niskokaloryczne (typu light), bezmięsne pasty do smarowania i nadziewania, błyskawiczne produkty zbożowe i mleczno-zbożowe (kaszki i kleiki),
→ mieszanki przyprawowe,
→ kawy: ziarniste aromatyzowane, zbożowe, napoje kawowe typu Cappuccino,
→ ekstrakty roślinne w płynie i proszku,
→ makarony i kasze instant.
Oferta Zakładu Przetwórstwa Ziemniaków i Skrobi:
→ technologie spożywczych skrobi modyfikowanych z grupy skrobi utlenionych, acetylowanych i sieciowanych, skrobi modyfikowanych dla papier- nictwa – klejów do tektury falistej, preparatów do powierzchniowego za- klejania papieru i zaklejania papieru w masie, skrobi kationowej, klejów do worków i galanterii papierniczej; preparatów skrobiowych dla przemysłu włókienniczego – klejonek do osnów i środków apretujących, skrobiowych koloidów ochronnych do płuczek wiertniczych, maltodekstryn oraz syropów glukozowych o różnej zawartości węglowodanu dominującego, a tak- że syropu o właściwościach prebiotycznych, karmelu skrobiowego, prze- twórstwa różnych roślin skrobiowych.

Działalność usługowa
→ Aglomeracja pylistych mieszanek w celu poprawy ich rozpuszczalności oraz usprawnienia operacji technologicznych.
→ Instantyzacja surowców zbożowych.
→ Sterylizacja surowców roślinnych (przypraw).
→ Wytwarzanie ekstraktów roślinnych w formie syropu i proszku.
→ Otrzywanie makaronów i kas instant.
→ Wytwarzanie mieszanek produktów sypkich.
→ Rozwiązania inżyniersko-konstrukcyjne oraz wytyczne do projektowania linii do modyfikacji skrobi, otrzymywania hydrolizatów skrobiowych oraz koncentratów spożywczych.
→ Ocena jakości fizyko-chemicznej, w tym metodami HPLC i GC, oraz or- ganoleptycznej półproduktów i produktów rolno-spożywczych (akredytowany system zarządzania jakością).
→ Oznaczanie właściwości reologicznych produktów skrobiowych.
→ Konsultacje techniczno-technologiczne w zakresie produkcji spożywczych wyrobów z ziemniaków (kostka ziemniaczana, grys, susz na puree, mieszanki na przekąski, przyprawy smakowe, receptury koncentratów ziemniaczanych).
Ważniejsze osiągnięcia OK

W Poznaniu opracowano technologie szeroko znanych produktów takich jak: kawa zbożowa INKA, produkty dla dzieci i niemowląt: BEBIKO, BEBIŚ, błyskawiczne kaszki zbożowe, kleiki; niskodrażniące kawy naturalne ASTRA i APIS oraz beztłuszczowy makaron instant np. pod marką PESSO. Opracowano także technologie glukozy krystalicznej i syropów skrobiowych oraz wielu preparatów skrobiowych dla różnych gałęzi przemysłu.

O wartości wykonywanych w naszej Jednostce prac naukowo-badawczych świadczyć mogą liczne nagrody i wyróżnienia.

W ostatnich latach do ważniejszych osiągnięć można zaliczyć:
→ uzyskane Patenty (w ostatnich 5 latach) – 13,
→ zgłoszenia patentowe (w ostatnich 5 latach) – 29, w tym 4 zagraniczne,
→ nagrody (wyróżnienia, medale) za opracowane i opatentowane technologie (w ostatnich 5 latach) – 28, w tym 20 zagranicznych,
→ opracowane w OK IBPRS i wdrożone w ostatnich latach nowe technologie:

1. „Technologia ciągłej sterylizacji (dekontaminacji) przypraw oraz urządzenia do ciągłej sterylizacji”.

W OK IBPRS w Poznaniu opracowano oryginalną, skuteczną technologię dekontaminacji przypraw oraz skonstruowano odpowiednie – do tego celu wydajne urządzenia, uzyskując patent RP nr 189.396”.

Omawiana technologia (urządzenia) jest uniwersalna i bardzo elastyczna, umożliwia sterylizację praktycznie wszystkich rodzajów przypraw (surowców roślinnych) bez względu na ich rozmiany (od niemalże całych roślin, korzeni, owoców, nasion aż do przypraw sproszkowanych włącznie), z wydajnością od 50 do 500 kg/h w zależności od rodzaju przypraw oraz stopnia ich zakażenia.

W wyniku tak prowadzonego procesu uzyskujemy produkt końcowy o bardzo dobrej jakości o parametrach zgodnych z Polskimi Normami dotyczącymi przypraw.

Wdrożenie to przyniosło istotne efekty ekonomiczne dla zakładów zlecających sterylizację przypraw wynikające ze sprzedaży pełnowartościowych przypraw, uzyskiwanych po sterylizacji surowców. Wartość wysterylizowanych przypraw przekroczyła 38 milionów złotych. Także wdrażający, czyli Zakład Doświad-
czynny OK IBPRS osiągnął wymierne znaczną wpływy finansowe z tyt. prowadzenia sterylizacji przypraw wynoszące ok. 5,0 milionów złotych.

Technologia sterylizacji przypraw została wyróżniona wieloma nagrodami zagranicznymi i krajowymi.

2. „Opracowanie technologii produkcji zagęstników skrobiowych dla przemysłu spożywczego”.

Opracowano i wdrożono technologie produkcji wysokowydajnych zagęstników spożywczych, głównie z grupy stabilizowanych reologicznie skrobi sieciowanych i utlenionych. Najszersze zastosowanie zagęstniki znalazły w przemysłach mięsnym, owocowo-warzynowym i koncentratów spożywczym. Roczną produkcję tych zagęstników wynosi ok. 10.000 ton o wartości ok. 30 mln złotych.

3. „Technologia wytwarzania beztłuszczowych makaronów instant”.

Technologia spełnia potrzeby konsumentów poszukujących żywności wygodnej i zarazem bezpiecznej dla zdrowia. Beztłuszczowy makaron instant to produkt nowej generacji, ma szereg zalet – jest wyrobem: lekkostrawnym, niskotłuszczowym, bezcholesterolowym, o wysokiej zawartości węglowodanów złożonych, bez dodatków chemicznych, o wysokiej trwałości, niewymagającym gotowania i wygodnym w stosowaniu.

Dzięki swym walorom przydatny jest do szerokiego wykorzystania, zarówno w gospodarstwie domowym, gastronomii, turystyce, cateringu jak i w przemyśle spożywczym. Technologia umożliwia wytwarzanie wielu krótkich form makaronu różnych rodzajów (w zależności od użytych mieszanek zbóżowych i dodatków) i jest chroniona przez 5 wynalazków w UP RP oraz 4 zgłoszenia o patent międzynarodowy.

Opracowanie uzyskało wiele nagród zagranicznych i krajowych.

4. „Opracowanie, zaprojektowanie i wdrożenie enzymatycznych procesów hydrolizy skrobi na potrzeby przemysłowej produkcji wszystkich asortymentów hydrolizatów: maltodekstryn, syropów, glukozy”.

Opracowania dotyczą technologii, inżynierii oraz konstrukcji stosowanej aparatury, a także koncepcji automatyzacji produkcji z wykorzystaniem programów sterujących, przygotowywanych zgodnie ze specjalnie stworzonymi algorytmami.
Wdrożenia, dokonane w różnych zakładach przemysłu ziemniaczanego, dotyśły hydrolizy skrobi, a także pozostałych operacji całego procesu przetwórczego: rafinacji i filtracji, zagęszczania i przechowywania gotowego produktu.

Przykładowe wdrożenia z ostatnich kilku lat:
→ Syropiarnia maltozowa z węzłem ciągłego scukrzania – ZPZ Lublin (wyd. 40 t/dobę)
→ Stacja ciągłej, enzymatycznej hydrolizy skrobi na potrzeby produkcji maltodekstryn, syropów i glukozy krystalicznej – PPS Łomża (wyd. 80t/dobę).
ODDZIAŁ CHŁODNICTWA
I JAKOŚCI ŻYWNOŚCI (OCH)

Dyrektor
dr inż. Elżbieta Polak

Al. Józefa Piłsudskiego 84, 92–202 Łódź

Początki wspólnej działalności połączonych łódzkich jednostek nie były łatwe. Dużym utrudnieniem było funkcjonowanie w dwóch obiektach, dawnych siedzibach: CLCh i COBRPGiAS. Po wykonaniu prac remontowych w budynku przy Al. Marszałka J. Piłsudskiego 84, w lipcu 2009 r. nastąpiła przeprowadzka laboratorium z ul. Kopernika 15/17. Dzięki dużemu zaangażowaniu wszystkich
pracowników, niezwykle trudne przedsięwzięcie przebiegło bardzo sprawnie, nie powodując żadnych zakłóceń w funkcjonowaniu Oddziału. Miało to szczególne znaczenie w działalności akredytowanej Laboratorium. Utworzony Oddział Chłodnictwa i Jakości Żywności, jako instytut badawczy, prowadzi badania naukowe i prace rozwojowe z dziedziny technologii i techniki produkcji żywności mrożonej i chłodzonej, związanej z całym zakresem łańcucha chłodniczego, a więc obszaru charakterystycznego dla dawnego Centralnego Laboratorium Chłodnictwa. Badania obejmują zapewnienie i poprawę jakości oraz bezpieczeństwa zdrojowego żywności, opracowywanie technologii produkcji nowych asortymentów, przygotowywanie założeń technologiczno-technicznych dla nowych i modernizowanych zakładów, projektowanie i wykonywanie specjalistycznych urządzeń pomiarowo-sterujących wraz z oprogramowaniem, służących do monitoringu stężeń par amoniaku i innych gazów, temperatury oraz wilgotności powietrza.

Dobra znajomość zagadnień technologicznych branży chłodniczej, upoważnia jednostkę do przygotowywania dla podmiotów gospodarczych, opinii i ekspertyz obejmujących działalność innowacyjną, które są wskazane przy występowaniu o dotacje w ramach funduszy unijnych.

Dzięki połączeniu CLCh i COBRPGiAS, nowoutworzony Oddział Chłodnictwa i Jakości Żywności posiada, jeden z pierwszych w Polsce Certyfikat Akredytacji Nr AB 212, nadany przez Polskie Centrum Akredytacji, obejmujący szeroki zakres akredytowanych metod badawczych mikrobiologicznych i fizykochemicznych, który z roku na rok jest rozszerzany. Pracownia mikrobiologii, jako jedyna w IBPRS posiada uprawnienia Głównego Lekarza Weterynarii do wykonywania badań żywności pochodzenia zwierzęcego w ramach urzędowej kontroli. Planowane jest również uzyskanie akredytacji na badania z zakresu oceny sensorycznej produktów spożywczych, tym bardziej, że pomieszczenia już są przygotowane zgodnie z obowiązującymi w tym zakresie przepisami.

Powyższą działalność Oddział Chłodnictwa i Jakości Żywności realizuje poprzez zakłady merytoryczne, w skład których wchodzą pracownie. Są to:
→ Zakład Technologii i Techniki Chłodnictwa
(kierownik dr inż. Elżbieta Polak)
• Pracownia Technologii i Przechowalnictwa Żywności
 (kierownik dr inż. Joanna Markowska)
• Pracownia Techniki i Instalacji Chłodniczych
 (kierownik mgr inż. Urszula Stęplewska)
• Dział Produkcji Doświadczalne
 (kierownik mgr inż. Elżbieta Panasiuk)
Oddział Chłodnictwa i Jakości Żywności (OCH)

→ Zakład Jakości Żywności (kierownik dr Beata Bartodziejska)
 • Pracownia Mikrobiologii
 (kierownik dr Joanna Królasik)
 • Pracownia Analiz Fizykochemicznych i Sensorycznych
 (mgr inż. Andrzej Cis)

Oprócz tematów prowadzonych w ramach działalności statutowej, wykonano badania w ramach dwóch projektów celowych we współpracy z przemysłem. Od 2010 r., w ramach Konsorcjum z jednostkami naukowymi, realizowany jest Projekt pt. „Nowoczesne technologie dla sektora rolno-spożywczego przy ograniczaniu emisji gazów cieplarnianych”, dotowany z funduszy UE w ramach PO IG.

O ogromnym zaangażowaniu Oddziału w ochronę środowiska świadczy prowadzenie wszechstronnych działań, ukierunkowanych na rozwiązywanie globalnych problemów, na które ma wpływ niekontrolowana emisja czynników chłodniczych.

W Pracowni Techniki i Instalacji Chłodniczych, wykonano szereg znaczących prac naukowo-badawczych (zapoczątkowanych w CLCh), których wyniki zostały wdrożone praktycznie w branży chłodniczej. Między innymi:
→ budowano pierwszy polski analizująco-wykonawczy system detekcji niekontrolowanych wycieków amoniu z instalacji chłodniczych. W systemie zostało opatentowane innowacyjne rozwiązanie czujnika, umożliwiające jego pracę w krytycznych warunkach temperaturowo-wilgotnościowych, panujących w komorach chłodniczych i mroźniach;
→ dokonano ponad 40-tu wdrożeń, instalując innowacyjne systemy kontrolno-decyzyjne do detekcji niebezpiecznych czynników chłodniczych oraz temperatury i wilgotności w obiektach przemysłowych (chłodniach, browarach, zakładach owocowo-warzywnych, cukierniczych) i użyteczności publicznej (ośrodkach sportowych, lodowiskach);
→ realizowano projekt rozwojowy pt. „Opracowanie koncepcji i wykonanie prototypu systemu kontroli i identyfikacji gazów CFC, HCFC, HFC w kontekście Rozporządzeń Unii Europejskiej”.
IBPRS Oddział Chłodnictwa i Jakości Żywności jest członkiem, biorącym aktywny udział w pracach Krajowego Forum Chłodnictwa oraz współdziałała na rzecz legislacji w branży.

Jednym z ważnych kierunków działalności Oddziału jest ścisła współpraca z przemysłem chłodniczym, a w szczególności z branżą produkującą lody. Jest to kontynuacja tradycji Centralnego Laboratorium Chłodnictwa, przy współudziale którego, w 1994 r. zostało zawiązane Stowarzyszenie Krajowych Producentów Lodów i Deserów Mrożonych, a od 2003 r. do chwili obecnej, jego prezesa jest dr inż. Elżbieta Polak. Ta współpraca z przemysłem spożywczym znajduje także odzwierciedlenie w licznych badaniach wykonywanych w akredytowanym Laboratorium w Zakładzie Jakości, w ramach kilkudziesięciu stałych umów i wielu zleceń. Ponadto, w ramach Regionalnego Programu Operacyjnego Województwa Łódzkiego Kapitał Ludzki, dzięki funduszom na dofinansowanie szkoleń, w latach 2011–2013 realizowany jest projekt pt.: „Szerzenie wiedzy pracowników sektora spożywczego kluczem do sukcesu przedsiębiorstw”. W ramach umowy z Urzędem Marszałkowskim w Łodzi, OCh prowadzi corocznie, od 2008 r., badania jakościowe produktów spożywczych, biorących udział w konkursie oraz uczestniczą w pracach Komisji konkursowej Łódzki Tygiel Smaków, w czasie targów Dni Naturalnej Żywności NATURA FOOD.

Nawiązując do tradycji Centralnego Ośrodka Badawczo-Rozwojowego Przemysłu Gastronomicznego i Artykułów Spożywczych, IBPRS Oddział Chłodnictwa i Jakości Żywności wykonuje badania i ocenę jakości artykułów rolno-spożywczych, w ramach Spółdzielczego Znaku Jakości.

OCh czynnie uczestniczy w kształceniu kadr dla potrzeb gospodarki – studenci łódzkich uczelni odbywają w jednostce praktyki studenckie, wykonują prace magisterskie, a także odbywają ćwiczenia i seminaria.

Pracownicy OCh biorą także udział w pracach normalizacyjnych Komitetu Technicznego nr 3 ds. Spraw Mikrobiologii Żywności oraz Komitetu Technicznego nr 88 ds. Żywności Mrożonej, któremu przewodniczy dr inż. Elżbieta Polak – Dyrektor Oddziału.

Innym działaniem, na rzecz branży lodziarskiej i gastronomicznej, jest udział dr inż. Elżbieta Polak w pracach Rady Programowej (od 2007) i jako redaktor działowy „działu lody” w Przeglądzie Piekarском i Cukierniczym (od 1999) oraz Rady Programowej w Przeglądzie Gastronomicznym (od 2011).

Obecnie, w Oddziale zatrudnionych jest 39 pracowników w tym 28 merytorycznych (6 adiunktów i 2 asystentów). Załoga jest młoda i zawodowo ambitna. Od początku istnienia OCh, czyli od 2008 r. dwie osoby uzyskały stopień doktora.
Chcąc zachęcić pracowników do dalszego podnoszenia kwalifikacji, pozy- skano z Regionalnego Programu Operacyjnego Kapitał Ludzki, fundusze na dofinansowanie szkoleń dla pracowników. Dzięki projektowi pt.: „Specjalistyczna wiedza pracowników drogą do sukcesu jednostki naukowej”, prowadzone są szkolenia z zakresu: języka angielskiego, systemu zarządzania w laboratorium badawczym, kompetencji i wymagań technicznych, nowoczesnych metod badawczych, a także wykorzystania metod statystycznych w badaniach naukowych oraz autoprezentacji, sztuki efektywnej prezentacji i asertywności.

Działalności takiej nie można by było dobrze prowadzić i rozwijać bez pomocy i wsparcia służb wspomagających badania. Należy zatem wspomnieć o pracownikach Działu Księgowo-Administracyjnego z Główną Księgą Oddziału mgr Iwoną Mróz oraz pracownikach Działu Produkcji Doświadczalnej, którzy jednocześnie sprawują nadzór techniczny nad prawidłowym funkcjonowaniem jednostki.

Rys historyczny Centralnego Laboratorium Chłodnictwa (CLCh)

Centralne Laboratorium Chłodnictwa utworzone zostało 1 kwietnia 1961 r. z siedzibą w Warszawie, jako jednostka podporządkowana Zjednoczeniu Przemysłu Chłodniczego. Zgodnie z zarządzeniem nr 250 Ministra Przemysłu Spożywczego i Skupu, przedmiotem działania nowo powstałej placówki miało być prowadzenie prac badawczych i doświadczeń technicznych w zakresie: przechwalnictwa i obróbki chłodniczej artykułów spożywczych, technologii produkcji mrożonek, zastosowania urządzeń chłodniczych, stosowania w chłodniach materiałów izolacyjnych.

Kolejnym istotnym etapem w historii CLCh, było przejęcie w 1972 r. kierownictwa Laboratorium przez doc. dr hab. Macieja Urbaniaka. Od tego roku zaczął się rozwój Laboratorium. Zwiększono obsadę, zmieniono strukturę, powołując zakłady naukowe, grupujące poszczególne pracownie, zwiększono powierzchnię o kolejne nowe lokale na terenie Łodzi.

Zwrotnym punktem rozwoju było rozpoczęcie projektowania, a następnie budowy nowego gmachu CLCh, którego uroczyste otwarcie nastąpiło 26 października 1978 r. Laboratorium z pięciu miejsc na terenie Łodzi, przeniesło się do budynków na jednej działce, położonej przy ul. Armii Czerwonej 28a (obecnie al. Marsz. J. Piłsudskiego 84).

Oddanie własnych, obszernych i dobrze wyposażonych pomieszczeń, oprócz znakomitych warunków do pracy badawczej, stworzyło nowe możliwości, a mianowicie uruchomienie działalności produkcyjnej w skali małotonażowej. Zarządzeniem nr 65 Naczelnego Dyrektora Zjednoczenia z dnia 18 grudnia 1978 r., powołano przy CLCh Zakład Doświadczalny Mrożonej Żywności, jako wyodrębnioną jednostkę Zjednoczenia. Pełnomocnikiem Zjednoczenia upoważnionym do kierowania Zakładem został Dyrektor
Oddział Chłodnictwa i Jakości Żywności (OCH)

W całej historii CLCh, przy ocenie kadry nacisk kładziono nie tylko na predyspozycje badawcze i posiadaną wiedzę z zakresu chłodnictwa, ale także na znajomość przemysłu, umiejętności wdrażania wyników prac w zakładach przemysłowych, zdolność do współpracy z różnymi jednostkami gospodarki uspołecznionej itp. Tak postawione kryteria procentowały nie tylko pracami o dużym zasobie innowacji techniczno-technologicznych (w tym także pracami o charakterze doktoratu czy habilitacji), ale także wynalazkami i znaczną liczbą prac wykorzystywanych w przemyśle.

W latach 1961–1965 problemy związane z technologią produkcji mrożonych potraw, rozwiązano w Pracowni Technologii Produkcji Mrożonych Artykułów Spożywczych w Warszawie, a od 1 sierpnia 1965 r. w Pracowni
Wyrobów Kulinarnej w Łodzi. W tamtym okresie wykonano wiele prac, których celem było opracowanie i wdrożenie do praktyki przemysłowej dokumentacji technologicznej wielu wyrobów, np.: mrożonych pyz ziemniaczanych z różnymi nadzieniami, czy pierogów. Należy podkreślić, że wszystkie prowadzone prace były ściśle związane z problematyką rozwijającego się przemysłu chłodniczego. Realizowano je w ramach funduszów centralnych, branżowych oraz bezpośrednich zleceń przedsiębiorstw.

Drugą, niezwykle ważną działalność CLCh realizowano w Pracowni Owoców i Warzyw. W latach 1965–1968 przeprowadzone zostały badania mające na celu poznanie podstawowych problemów dotyczących zamrażalnictwa owoców i warzyw. W ramach tych badań obserwowano zmiany: fizyko-chemiczne i cytologiczne zachodzące w owocach i warzywach w procesach ich zamrażania i przechowywania oraz określono wartości ubytków naturalnych. Uzyskane w trakcie tych prac wyniki pozwoliły na stworzenie podstaw rozwoju chłodniczego przetwórstwa owoców i warzyw, a zdobyte w tych latach doświadczenia były pomocne przy rozwiązywaniu dalszych problemów.

Wyniki tych prac były rozpowszechnione w formie instrukcji technologicznych dla poszczególnych gatunków warzyw i owoców. Zawierały również wymagania jakościowe dla surowców i uzyskanych z nich produktów. Opracowane technologie były sukcesywnie wprowadzane do praktyki przemysłowej.

W roku 1973, zgodnie z ogólnoswiatową tendencją panującą w zamrażalnictwie żywności, podjęto prace związane z wprowadzeniem do przemysłu chłodniczego w Polsce zamrażania w ciekłym azocie.

Uruchomienie w końcu lat siedemdziesiątych, w czterech chłodniach linii technologicznych do produkcji frytek, spowodowało konieczność podjęcia działań zapewniających odpowiednie odmiany ziemniaków do tej produkcji.

Sygnaлизowany przez eksporterów mrożonek problem dużych zawartości azotanów i azotynów w warzywach, spowodował podjęcie prac, które analizowały zawartość tych związków w mrożonkach w poszczególnych gatunkach warzyw. Badano również możliwość zamrażania warzyw bez procesu blanszowania. Potwierdzono wcześniejsze doniesienia, że przemiany chemiczne oraz związane z nimi zmiany organoleptyczne zachodzą intensywniej w warzywach nieblanszowanych przed zamrożeniem. Stwierdzenie powyższe nie wykluczało jednak możliwości zamrażania niektórych warzyw bez wcześniejszej obróbki termicznej.
Oddział Chłodnictwa i Jakości Żywności (OCH)

Bardzo wiele uwagi poświęcono także zagadnieniom poprawy jakości mrożonych truskawek. Opracowano nową normę branżową na truskawki zamrożone. W 1973 r. rozpoczęto współpracę z innymi jednostkami naukowymi, której celem było wyhodowanie, ocena i wdrożenie do praktyki przemysłowej nowych odmian truskawek.

W latach 1993–1996 w Centralnym Laboratorium Chłodnictwa zatrudnionych było średnio około 55–65 osób. W tym czasie w CLCh działały następujące pracownie:

→ Pracownia Mikrobiologii (kierownik dr Małgorzata Kuźmińska)
→ Pracownia Wyrobów Kulinarnych kierownik dr inż. Hanna Przybył)
→ Pracownia Lodów i Deserów Mrożonych (kierownik mgr inż. Bronisława Małolepszy)
→ Pracownia Owoców i Warzyw (kierownik dr inż. Grażyna Rutkowska)
→ Pracownia Instalacji Chłodniczych (kierownik mgr inż. Urszula Stęplewska)
→ Pracownia Techniki i Urządzeń Chłodniczych (kierownik dr inż. Marek Michniewicz)
→ Pracownia Przechowalnictwa (kierownik mgr inż. Zbigniew Błoński)
→ Pracownia Ochrony Środowiska (mgr inż. Andrzej Kaczmarek)

Analizując tematykę realizowaną w ramach działalności statutowej widać wyraźnie, że obejmowała zagadnienia ukierunkowane na rozwiązania techniczne, technologiczne i organizacyjne w przemyśle chłodniczym, zmierzające do zmniejszenia pracochłonności, obniżenia zużycia energii i surowców, poprawy jakości, doskonalenia i opracowywania technologii nowych asortymentów mrożonych i schłodzonych wyrobów kulinarnych, a także lodów i deserów mrożonych.

Opracowany w CLCh „System kontroli stężenia par amoniaku SKS NH₃”, oprócz licznych wdrożeń, przyniósł twórcom także Nagrodę I-go stopnia MRiGŻ za wybitne osiągnięcia zespołu realizującego, w zakresie postępu naukowo-technicznego. W tym samym roku twórcy pracy pt.: „Wprowadzenie nowych, istotnych rozwiązań techniczno-technologicznych w tunelu ciągłego działania do zamrażania produktów żywnościowych”, uzyskali Nagrodę II-go stopnia MRiGŻ.

W 1995 r. uzyskano patent na wynalazek: „Sposób zabezpieczania powierzchni ścian w zakładach produkujących żywność przed rozwojem pleśni” (PL 167426 B1), którego twórcą była dr Małgorzata Kuźmińska.

Silna więź z przemysłem lodziarskim znalazła odzwierciedlenie w realizacji projektu celowego pt.: „Specjalne pasty owocowe – półprodukty do produkcji lodów”, wyniki którego w 1996 r. wdrożono w Zakładzie Doświadczalnym CLCh i których produkcja trwa nieprzerwanie do chwili obecnej. Za powyższą pracę zespół realizujący uzyskał w 1997 r., nagrodę II stopnia MRiGŻ, a opracowaną technologię nagrodzono medalem i dyplomem na V Targach Żywności i Przetwórstwa FOODTECH – POL w Kielcach, w 1998 r.

Dobre kontakty z branżą chłodniczą przyniosły również w tym okresie 35 wdrożeń i upowszechnień wyników badań w praktyce. Przeważały wdrożenia systemu kontroli i sterowania dla par amoniaku w komorach zamrażalniczych (15), a 12 to nowe technologie lodów i mrożonych wyrobów kulinarnych. Stanowiło to znaczącą pomoc finansową w utrzymaniu CLCh, w sytuacji coraz niższych dotacji statutowych.

Ważnym aspektem współpracy z przemysłem chłodniczym i Agendami państwowymi, była realizacja prac związanych z oceną stanu technicznego, technologicznego i higienicznosanitarnego, wybranych zakładów chłodniczych, wykonana w ramach umowy zawartej z Agencją Rynku Rolnego.

Oddział Chłodnictwa i Jakości Żywności (OCH)
Rząd górny (od lewej): Zygmunt Bąk, Magdalena Wróbel-Jędrzejewska, Łukasz Przybysz, Krzysztof Maćkowiak, Krzysztof Egierski,
Anna Szosland-Fałtyn, Magdalena Malinowska, Anna Czajkowska, Krystyna Borkowska, Agnieszka Kaźmierczak,
Aleksandra Wiatrowska, Wojciech Sender, Andrzej Jędrzejczak.
Rząd środkowy (od lewej): Urszula Lubiatowska, Beata Paziak-Domańska, Renata Rybicka, Anna Stanisławska, Marlena Pietrzak, Milena Krępka,
Rząd dolny (od lewej): Paweł Kuleta, Beata Bartodziejska, Joanna Królasik, Andrzej Cis, Elżbieta Polak, Iwona Mróz,
Urszula Stęplewska, Elżbieta Panasiuk, Joanna Markowska

Opracowana w ramach drugiego projektu technologia mrożonych deserów specjalnego przeznaczenia, została wdrożona w pięciu zakładach produkujących lody. Ponadto, w 2005 r. uzyskano 4 patenty Rzeczpospolitej Polskiej, wynikające z w/w cyklu badań, na wynalazek pt.: „Lody” (190658, 190659, 190660, 190661).

Następne lata to okres pogarszającej się sytuacji finansowej CLCh (niższe dotacje na dofinansowanie działalności statutowej), co spowodowało konieczność podjęcia decyzji o wynajęciu dużej powierzchni budynków biurowych i laboratoryjnych, Agencji Restrukturyzacji i Modernizacji Rolnictwa.

W 2005 r. Centralne Laboratorium Chłodnictwa uzyskało akredytację Polskiego Centrum Akredytacji o numerze AB 640, upoważniającą do wykonywania badań mikrobiologicznych żywności. Pozwoliło to na rozszerzenie współpracy z przemysłem, a tym samym pozyskanie dodatkowych środków finansowych na prowadzenie działalności.

Oddział Chłodnictwa i Jakości Żywności (OCH)

Rys historyczny Centralnego Ośrodka Badawczo-Rozwojowego Przemysłu Gastronomicznego i Artykułów Spożywczych w Łodzi

Jak wynika z powyższej relacji, apogeum rozwoju ilościowego Zakładów Ośrodka, jak również liczby pracowników, miało miejsce na początku lat 70. Wystarczy wspomnieć, że w pewnym okresie Ośrodek zatrudniał łącznie 550 pracowników, a w 1979 r. – 350.

Jest rzeczą oczywistą, że kolejne decyzje władz o poszerzeniu zakresu terytorialnego i merytorycznego Ośrodka nie mógłby mieć miejsca, gdyby nie przygotowywali tych decyzji odpowiedni ludzie. Inicjatorem działalności Ośrodka, jego organizatorem i wieloletnim pierwszym dyrektorem, był mgr inż. Jerzy Pilarski, który potrafił skupić wokół siebie zespół pracowników, umożliwiających tak znaczący rozwój Ośrodka. Do najbliższych współpracowników i współorganizatorów Ośrodka zaliczyć należy, pracującego nieprzerwanie od 1972 r., na stanowisku z-cy dyrektora mgr inż. Włodzimiera Bednarowicza, mgr Mieczysława Zynera – z-cę, a w latach 75–82 dyrektora Ośrodka, z-ców dyrektora mgr Jana Darmacha i mgr Antoniego Sitnickiego.

Rozdrobnienie terytorialne Zakładów i Pracowni Ośrodka (np. w Łodzi w kilku miejscach, w kraju również), nie sprzyjało rozwojowi organizacyjnemu i merytorycznemu. Ogólnokrajowy kryzys na początku lat 80. trudności te znacznie pogłębił.

Wcześniejsze starania kierownictwa Ośrodka o uzyskanie budynków na terenie miasta Łodzi, mogącą zintegrować działalność merytoryczną Ośrodka, w 1982 r. zostały uwięczone powodzeniem. Siedzibą Ośrodka w Łodzi został zespół budynków przy ul. Kopernika 15/17, zaadaptowanych i zmodernizowanych dla jego potrzeb, stanowiący zwarty kompleks, mieszczący wszystkie Zakłady i Pracownie z terenu m. Łodzi.

W 1986 r. w ramach COBRPGiAS działały:
→ Centralne Laboratorium Jakości
 (dr inż. Jerzy Słomczykowski, dr Anna Markowska)
→ Zakład Naukowo-Badawczy w Warszawie
 (dr Jadwiga Wnęk, dr Jan Kucharczyk)
→ Zakład Technologii Produkcji Spożywowej
 (mgr inż. Barbara Siwek)
→ Zakład Konstrukcji Maszyn i Urządzeń
 (inż. Kazimierz Jezierny, inż. Wacław Wszniewski, mgr inż. Andrzej Felisiak)
→ Zakład Doskonalenia Organizacji i Normowania Pracy
 (mgr Helena Gałkiewicz)
→ Zakład Działalności Ogólnotechnicznej

220
Oddział Chłodnictwa i Jakości Żywności (OCH)

(inż. Jadwiga Dajniak, mgr inż. Andrzej Zieliński)
→ Pracownia Techniki Usług Gastronomicznych
 (mgr inż. Danuta Janik)
→ Pracownia Prognoz i Ekonomiki
 (mgr Regina Banaś)

Generalnie można stwierdzić, że poza zagadnieniami piekarstwa, które realizował Zakład Naukowo-Badawczy Przemysłu Piekarskiego w Warszawie – COBRPGiAS zajmował się, na zlecenie CZSS „Społem”, innych jednostek spółdzielczych (spoz „Społem”), państwowych i prywatnych, całokształtem zagadnień związanych z handlem, produkcją, gastronomią, usługami, działalnością hurtową, ochroną środowiska itp.

W COBRPGiAS wykonywano opracowania dotyczące kompleksu zagadnień (technologia, technika, konstrukcja urządzeń) związanych z produkcją garmażeryjną, przetwórstwem warzyw i owoców (kandydowaniem warzyw i owoców), itp.

Znane były opracowania Ośrodka dotyczące modernizacji i zmiany funkcji supersamów, dużych sklepów i innych jednostek. W Ośrodku wykonano szereg ekspertyz i przedstawiono wiele propozycji dotyczących podczyszczania i oczyszczalni ścieków w zakładach produkcyjnych. Zagadnienia organizacyjne i ekonomiczno-finansowe, analizowane i rozwiązywane w COBRPGiAS, ułatwiały spółdzielniom prawidłowe prowadzenie działalności gospodarczej.

Opracowywane przez Ośrodek receptury posiłków i przypraw, były stosowane w wielu zakładach gastronomicznych, stołówkach i zakładach produkcyjnych na terenie kraju. Nad merytoryczną stronę działalności Ośrodka nadzór sprawowała Rada Naukowa, w skład której wchodziли wybitni naukowcy i praktycy. Przewodniczącym Rady Naukowej przez szereg lat był prof. Bolesław Bachman.

Jedną z ważniejszych merytorycznych komórek organizacyjnych Ośrodka było Centralne Laboratorium Jakości, którego obszar działań to: dokonywanie oceny jakości artykułów spożywczych, chemii gospodarczej i wyrobów perfumeryjno-kosmetycznych, stymulowanie producentów w kierunku wytwarcia towarów wysokiej jakości, edukacja konsumentów i ochrona ich interesów. CLJ wykonywało także badania związane z organizacją baz produkcyjnych żywności dla m. Łodzi, atestując glebę oraz warzywa z tych baz. Brało czynny udział w pracach Krajowego Towarzystwa Propagowania Zdrowej Żywności w Tarnowie. Intensywnie współpracowało z Federacją Konsumentów, pełniąc funkcje laboratorium testującego wybrane grupy towarowe.
Na zlecenie Ministerstwa Ochrony Środowiska CLJ podjęło prace badawcze w temacie resortowym pt. „Skażenia żywności”, określając poziomy skażenia żywności metalami ciężkimi.

W latach 1980–1985 szeroki zakres badań obejmował zagadnienia technologiczne i analityczne produkcji napojów bezalkoholowych. Wyniki prac dotyczących przygotowania technologii nowych asortymentów napojów, zużycia dwutlenku węgla, trwałości napojów, badań nad jakością wody technologicznej do produkcji napojów, nowych metod analitycznych, stały się podstawą do wprowadzenia istotnych zmian w technologii wytwarzania napojów, wpłynęły na poprawę wskaźników techniczno-technologicznych zakładów, jak również zostały wykorzystane przy opracowywaniu bądź nowelizacji norm.

Duża grupa prac prowadzonych w Zakładzie obejmowała zagadnienia związane z poprawą technicznego wyposażenia zakładów garażeryjnych. Opracowane w 1984 r. „Wytyczne do projektowania maszyn i urządzeń potrzebnych w produkcji zakładów garażeryjnych” stały się inspiracją do podjęcia prac nad konstrukcją i uruchomieniem produkcji kilku urządzeń, takich jak: płuczka do warzyw korzeniowych, mieszalnik delikatnych mas, krajalnica surowców garażeryjnych, zestaw urządzeń do produkcji majonezu o wydajności ok. 1 t/zmianę.

Istotne znaczenie, zarówno dla jednostek „Społem”, jak również dla gospodarki narodowej, miały prace z zakresu ochrony środowiska, prowadzone nieprzerwanie od 1980 r. Podstawowy kierunek badań obejmował zagroże-
nia, jakie dla środowiska naturalnego stwarzają ścieki odprowadzane z zakładów produkcyjnych „Społem”.

Dużą rolę w działalności Ośrodka odegrała Pracownia Organizacji i Techniki Usług Gastronomicznych, utworzona w 1977 r., kierowana przez Danutę Janik.

W 1976 r. z chwilą przejścia Ośrodka do organizacji „Społem”, zagadnienia gastronomiczne stały się jednym z głównych kierunków działań. Zaiształa więc konieczność utworzenia zespołu, który w sposób kompleksowy mógłby rozwiązywać wszelkie problemy gastronomii. Wysokie kwalifikacje zawodowe osób zatrudnionych w Pracowni, pozwoliły z powodzeniem prowadzić prace badawcze, rozwijowe i wdrożeniowe z zakresu: techniki, technologii i organizacji oraz rozwiązywać inne problemy związane z organizacją żywienia w kraju. Opracowano kompleksowe wytyczne do projektowania zakładów gastronomicznych, które znalazły powszechnie wykorzystanie w praktyce. Wykonywano także inne prace, w których wdrażano postęp techniczny i organizacyjny do placówek żywienia zorganizowanego.

Zagadnienia technologiczne były przedmiotem opracowania nowych przepisów kulinarnych na potrawy z surowców, których zużycie w gastronomii powinno być zwiększone, bądź to z uwagi na preferowanie ich przez naukę o żywieniu, bądź z uwagi na ich dostępność na krajowym rynku (np. mleko i jego przetwory oraz drób).

W Pracowni wykonano także opracowania o charakterze podręcznikowym, ułatwiające zarówno instruktaż służbom technologicznym, jak i wykonywanie pracy przez personel zakładów. Były to głównie opracowania z zakresu technologii i techniki usług gastronomicznych.

Zespół Pracowni był autorem projektu technologicznego zaplecza gastronomicznego największego szpitala w Polsce – Centrum Kliniczno-Dydaktycznego Akademii Medycznej w Łodzi oraz koncepcji organizacji żywienia pracowników w WSK-PZL Mielec.

Duży wkład dla drobnej wytwórczości miał Zakład Konstrukcji Maszyn i Urządzeń, który rozpoczął swą działalność wraz z powstaniem Ośrodka. W początkowym okresie swego istnienia wykonywał prace, które można podzielić na kilka grup. Pierwsza to maszyny produkcyjne, automaty, proste maszyny budowlane, maszyny dla produkcji spożywczej, jak również maszyny pomocnicze do produkcji. Druga grupa, to przyrządy do obróbki metals i formy do tworzyw sztucznych. Trzecia, to urządzenia produkcyjne i pomocnicze, zaś czwarta, to dokumentacje inwentaryzacyjno-konstrukcyjne na części zamienne.
Dwudziestoletni okres funkcjonowania Zakładu Konstrukcji Maszyn i Urządzeń umożliwił wykształcenie grupy wysokiej klasy specjalistów, których umiejętności dawały rękęmię utrzymania wysokiej jakości projektowanych urządzeń. Potencjał konstrukcyjny Zakładu gwarantował możliwość zaspokojenia potrzeb terenowych jednostek, w zakresie projektowania i modernizacji urządzeń spożywczych, wykorzystywanych w produkci na małą i średnią skalę.

Na przełomie lat 80. nastąpiły zmiany polityczne i gospodarcze, które spowodowały konieczność przystosowania się COBRPGiAS do nowych warunków.

Ośrodek pozbawiony został organu założycielskiego, jakim był CZSS „Spolem” i był zmuszony do zdobywania środków finansowych. W tych staraniach dopomógł KBN oraz inicjatywy własne.

W tym czasie na Dyrektora Ośrodka został powołany mgr inż. Waldemar Iwański, który przez 20 lat swojej pracy w Ośrodku, 15 lat współpracował, z pracującym od 1972 r. Z-cą Dyrektora mgr. inż. Włodzimierzem Bednarowiczem.

Uzyskane środki finansowe pozwoliły na podjęcie działań zmierzających do zorganizowania w Ośrodku nowocześnie wyposażonego Centralnego Laboratorium Jakości. Wysoko wykwalifikowana kadra naukowo-techniczna, posiadana aparatura badawcza oraz szeroki wachlarz możliwości analitycznych, upoważnił do wystąpienia do Polskiego Centrum Akredytacji o uzyskanie akredytacji na badania mikrobiologiczne i fizykochemiczne żywności, o Nr AB 212. COBRPGiAS był jedną z pierwszych placówek naukowo-badawczych, które uzyskały tak szeroką akredytację.

Niezależnie od badań jakościowych w CLJ prowadzone prace naukowe były podstawą do uzyskania przez dr hab. Antoniego Czesława Szydłowskiego tytułu profesora nadzwyczajnego oraz mgr Annę Markowską stopnia doktora.

Dbając o stałe podnoszenie poziomu pracy i kwalifikacji kadry naukowo-technicznej, systematycznie unowocześniano wyposażenie laboratoryjne, w tym skomputeryzowano wszystkie pracownie oraz księgowość.

Przez cały kilkunastoletni okres działalności Ośrodka, od przełomu lat 80. do momentu restrukturyzacji, pomimo olbrzymich nakładów finansowych na zakupy aparatury badawczej, niezbędnej do spełnienia wysokich wymagań stawianych przez Polskie Centrum Akredytacji, COBRPGiAS utrzymywał niezmiennie pełną płynność finansową.
ul. Jubilerska 4, 04-190 Warszawa

Instytut Przemysłu Mięsnego i Tłuszczowego powstał z połączenia Instytutu Przemysłu Mięsnego i Instytutu Przemysłu Tłuszczowego. Siedzibą obu instytutów był gmach Instytutu Przemysłu Fermentacyjnego zbudowany z przeznaczeniem na siedzibę Głównej Instytutu Przemysłu Spożywczego. Instytut Przemysłu Tłuszczowego powstał w 1954 r., a Instytut Przemysłu Mięsnego w 1955 r. Podstawowa kadra tego ostatniego wywodziła się z istniejącego wcześniej Centralnego Laboratorium Przemysłu Mięsnego.

Powstanie Instytutu Przemysłu Mięsnego

Oddział Technologii Mięsa i Tłuszczu

Po dymisji dyrektora Adama Borysa funkcje dyrektora pełnił czasowo doc. dr Stanisław Chuchła, a po nim doc. dr Kazimierz Miler, formalnie powołany w 1970 r. na stanowisko zastępcy dyrektora ds. naukowych.

W roku 1971 na stanowisko dyrektora Instytutu został powołany profesor dr Mieczysław A. Janicki, znakomity specjalista w dziedzinie nauki o mięsie i technologii. Stosunkowo mała aktywność Instytutu w tym czasie przyspieszyła decyzję o połączeniu Instytutu Przemysłu Mięsnego z Instytutem Przemysłu Tłuszczowego kierowanym przez energicznego i dobrze w owym czasie postrzeganego przez władze zwierzchnie docenta, a od 1975 r. profesora Augustyna Jakubowskiego. Na korzyść profesora Janickiego jako dyrektora Instytutu należy zapisać dbałość o wysoki poziom naukowy prowadzonych badań oraz opiekę i poparcie dla prac badawczych prowadzonych przez ówczesną kadrę naukową drugiego pokolenia, która licznie doktoryzowała się

Powstanie Instytutu Przemysłu Tłuszczowego

O rok wcześniej od Instytutu Przemysłu Mięsnego powstał Instytut Przemysłu Tłuszczowego. Został on sformowany przez wydzielenie z Głównego Instytutu Przemysłu Rolnego i Spożywczego jednostek organizacyjnych zajmujących się tematyką tłuszczową istniejącego w Warszawie od 1949 r. Zakładu Olejów i Tłuszczów oraz istniejącego w Gdańsku od 1950 r. Zakładu Technologii Tłuszczów Zwierzęcych. Na dyrektora nowo powstałego Instytutu powołano docenta dr. Antoniego Rutkowskiego sprowadzonego do Warszawy z Poznań, gdzie pracował w Wyższej Szkole Rolniczej w Katedrze Technologii Rol-
Oddział Technologii Mięsa i Tłuszczu

Powstanie Instytutu Przemysłu Mięsnego i Tłuszczowego miało miejsce w 1975 r. Powstał on Zarządzeniem Prezesa Rady Ministrów z 28 sierpnia 1975 r. z połączenia Instytutu Przemysłu Mięsnego i Instytutu Przemysłu Tłuszczowego. W chwili połączenia Instytut zatrudniał 280 pracowników w większości pracujących w centrali w Warszawie oraz w zamiejscowych jednostkach organizacyjnych w Poznaniu i Gdańsku. Tworząc nową strukturę organizacyjną starano się integrować, na ile to było możliwe zespoły badawcze obu połączonych instytutów. Okazało się to zadaniem nielatwym, bo specyfika branży mięsnej i olejarskiej była całkowicie odmienna, tak ze względu na przerabiany surowiec jak i stosowane technologie. Największego podobieństwa i wspólnoty warsztatowej można było się dopatrzyć w dziedzinie kontroli jakości i normalizacji, higieny produkacji oraz ekonomiki i organizacji produkcji. W październiku 1980 r. z Instytutu wyłączono personel Zakładu Ekonomiki i Organizacji Przemysłu, który przeniesiono do Instytutu Ekonomiki Rolnictwa i Gospodarki Żywnościowej, w którym integrację i koordynację badań można było prowadzić jeszcze bardziej skutecznie. W 1985 roku włączono do Instytutu zlokalizowany w Bydgoszczy Zakład Mięsoznawstwa Instytutu Fizjologii i Żywienia Zwierząt PAN w Jabłonnie, kierowany przez dr. Tadeusza Kotika. Generalnie lata osiemdziesiąte i początkielatwiesiątych cechował zastój w działalności badawczej, a nieliczne profesury –

Wysoka aktywność Instytutu w dziedzinie doradztwa technicznego i legislacyjnego zarówno w kraju jak i zagranicznie zaowocowała akredytacją Instytutu jako instytucji konsultującej w Unii Europejskiej. Instytut uzyskał z dniem 18 sierpnia 1995 roku wpis do prowadzonego w Brukseli Rejestru instytucji konsultujących w programach pomocowych Unii PHARE i TACIS (PHARE/TACIS Central Consultancy Register nr POL 20247) z szerokim spektrum kompetencji studyjnych, projektowych, konsultacyjnych, inspekcjonalnych w zakresie auditu, certyfikacji i gwarancji jakościowych oraz szkolenia. Doceniono wiedzę i autorytet pracowników naukowych Instytutu. Prof. S. Tyszkiewicz został wybrany delegatem środowiska do Komitetu Badań Naukowych i działał w jego organach decyzyjnych II i III kadencji. W 1993 roku tytuł profesorski uzyskała I. Tyszkiewicz i krótko po tym została wybrana do Rady Głównej Jednostek Badawczo Rozwojowych (JBR) i pełniła w niej funkcję Sekretarza. Powołano Ją również na przewodniczącą Wyższego Sądu Dyscyplinarnego dla pracowników JBRów. W Instytucie nastąpiła intensyfikacja i systematyzacja
działania na rzecz przemysłu mięsnego i olejarskiego, mająca ponadto trudne do przecenienia elementy integracji środowiska badawczo dydaktycznego pracującego w obronie zainteresowania tych branż. Począwszy od 1992 roku corocznie dwa razy, raz na wiosnę i drugi raz na jesień, Instytut organizuje „Dni Przemysłu Mięsnego”, w ramach których odbywają się sympozja o charakterze konferencji naukowo-technicznych oraz od trzech lat sesje posterowe pod hasłem „Postęp w Technologii Mięsa. Nauka Praktyce”, na których referowane są tematy interesujące pracowników przemysłu i instytucji pracujących na jego rzecz oraz organów kontrolnych, jak również prezentowane są wyniki badań prowadzonych w Instytucie oraz na uczelniach i innych instytutach resortowych lub PANowskich. Podobną coroczną imprezą o charakterze międzynarodowej konferencji naukowej Instytut organizuje z myślą o środowisku naukowo-technicznym i kierowniczym przemysłu tłuszczowego. Nosi ona nazwę „Postępy w Technologii Tłuszczów Roślinnych”. W ich ramach odbywają się konkursy jakości produktów, połączonej w przypadku produktów mięsnych z nadawaniem im cenionego przez konsumentów wyróżnika wysokiej jakości znaku „Produkt najwyższej jakości w polskim przemyśle mięsnym”.

Pracownicy Instytutu aktywnie uczestniczyli w organizacji i realizacji programu Ministerstwa Rolnictwa i Rozwoju Wsi „Polska Dobra Żywność”. Na członków Rady Naukowej programu powołani byli profesorowie S. Tyszkiewicz i M. Obiedziński. Prof. S. Tyszkiewicz przewodniczył Radzie w czasie I kadencji jej działania, następnie tą funkcję pełnił prof. M. Obiedziński. Dr S. Ptasznik uczestniczył w opracowaniu kryteriów jakości dla produktów tłuszczowych przewidzianych do wyróżnienia znakiem „Polska Dobra Żywność”. Ważnym wydarzeniem w życiu Instytutu i całego środowiska naukowego była organizacja 47. Światowego Kongresu Nauki o Mięsie i Technologii (ICoMST), który odbył się w dniach 26–31 sierpnia 2001 r. w Krakowie, w czterdzieści lat po Kongresie, jeszcze wtedy noszącym nazwę „Europejskiego”, zorganizowanym przez dyrektora dr Adama Borysa w sierpniu 1961 r. w Warszawie.

Oddział Technologii Mięsa i Tłuszczu
II rząd (od lewej): Piotr Szymański, Sylwia Górka, Maria Wawrzyniewicz, Monika Foltyn, Anna Krupska, Maria Kęska, Jakub Kern-Jędrychowski, Jerzy Zakrzewski.
III rząd (od lewej): Stanisław Grześkiewicz, Jan Węgrowski, Karol Mliński, Andrzej Borys, Stanisław Ptasznik, Artur Kalinowski.
Na zlecenie Ministerstwa Rolnictwa i Rozwoju Wsi Instytut prowadził monitoring jakości gleb, roślin, produktów rolniczych i spożywczych polegający na pobieraniu prób, analizowaniu ich na obecność określonych substancji podlegających kontroli na podstawie umów międzynarodowych i ustaleń Rady Monitoringu oraz opracowywanie okresowych raportów. Zgodnie z Rozporządzeniem Ministra Zdrowia z dnia 28 kwietnia 2004 r. Instytut został umieszczony w wykazie jednostek badawczo-rozwojowych określających i koordynujących programy monitoringu żywności i żywienia oraz opracowujących opinie naukowe niezbędne dla oceny ryzyka.

Instytut prowadzi wdrażanie w przemyśle mięsnym i tłuszczowym systemów samokontroli na podstawie zasad HACCP. Dzięki wdrożeniom zakładowych systemów HACCP uzyskano znaczy postęp w dziedzinie higieny produkcji oraz doprowadzono do uzyskania lub potwierdzenia uprawnień eksportowych zakładów do Unii Europejskiej i Stanów Zjednoczonych.

Instytut wdrażał klasyfikację tusz zwierząt rzeźnych EUROPE w polskim przemyśle mięsnym. W ramach tego wdrożenia prowadził szkolenia w kraju i za granicą ekspertów klasyfikacji tusz i szkolenia w kraju i zagranicą instruktorów klasyfikacji tusz wołowych, oraz szkolenia rzeczoznawców klasyfikacji tusz wołowych i rzeczoznawców klasyfikacji tusz wieprzowych.

Działalność badawcza i usługowa Instytutu jest skierowana na wspieranie rozwoju gospodarczego kraju, a głównie na wspieranie polskiego przemysłu mięsnego i tłuszczowego. Z wieloma zakładami Instytut zawarł umowy na know how i w ramach tych umów informuje o zmianach w przepisach prawnych dotyczących producentów żywności oraz udziela konsultacji w sprawach technologiczno-technicznych. W 2004 roku zawarto 86 umów wdrożeniowych z zakładami mięsnymi, drobiarskimi i tłuszczowymi o udostępnienie rozwiązań Instytutu. Instytut prowadzi działalność szkoleniowo-dydaktyczną ukierunkowaną na podnoszenie kwalifikacji zawodowych kadr inżynierskich przemysłu mięsnego i tłuszczowego, przemysłów pokrewnych oraz pracowników państwowych służb kontrolnych. Szczególne znaczenie Instytut przywiązuje do szkoleń związanych z dostosowywaniem przemysłu do standardów Unii Europejskiej.

Instytut poprzez swoich przedstawicieli aktywnie działa w międzynarodowych organizacjach naukowych: Europejskim Towarzystwie Prawa Żywnościowego EFLA (Europen Food Law Association), Międzynarodowej Organizacji Chemików Analityków International Subsection for Middle-East Europe, AOAC (International Association of Analytical Chemist), AOCS American

W 2004 roku Instytut uzyskał certyfikację swojego laboratorium badawczego (Certyfikat Akredytacji Laboratorium Badawczego nr AB 553 wydany przez Polskie Centrum Akredytacji dnia 26.11.2004 r). Wcześniej w 1996 r. uzyskał uprawnienia do certyfikacji produktów mięsnych i drobiarskich (Certyfikat nr 28/Cw-03/1/96).

W 2009 r. Instytut stał się partnerem Konsorcjum naukowo-przemysłowego. Konsorcjum będzie realizowało projekt pt. „Biożywność – innowacyjne, funkcjonalne produkty pochodzenia zwierzęcego” POIG.01.01.02-14-090/09, który umożliwi prowadzenie badań naukowych zmierzających do opracowania technologii wytwarzania nowych produktów spożywczych optymalnej wartości odżywczej i właściwościach prozdrowotnych spełniających kryteria żywności funkcjonalnej.

Współpraca z zakładami przemysłu mięsnego w najbliższych latach będzie obejmować zagadnienia surowcowe, technologiczno-techniczne, jakościowe i analityczne mięsa oraz produktów mięsnych.

Badania dotyczące surowca, tak jak dotychczas obejmować będą sterowanie jakością żywca wieprzowego przez wdrażanie i upowszechnianie systemu klasyfikacji tusz zwierząt rzeźnych według rozwiązań opracowanych w ramach projektu bliźniaczego pt. „Dostosowanie klasyfikacji tusz wieprzowych

235
do wymogów Unii Europejskiej”. Dotychczas wdrożenie systemu nastąpiło dopiero w ok. 20% zakładów. Przewidujemy dalszy udział Instytutu w upowszechnianiu klasyfikacji w pozostałych 80% rzeźni świń i bydła. Współpraca polegać będzie na konsultacjach i usługach dla przemysłu oraz na szkoleniach rzeczoznawców do spraw klasyfikacji mięsa.

W ramach działania na rzecz poprawy mięsniości Instytut uczestniczył ostatnio także w badaniach międzynarodowych nad doskonaleniem metod oceny jakości tuszy w ramach PR-5 w tzw. projekcie EUPIGCLASS. Wnioski z tych badań wykorzystywane są do współpracy z krajowym przemysłem mięsnym w ramach upowszechniania systemu klasyfikacji EUROP.

Ważną dziedziną współpracy będzie ocena wad jakości mięsa wieprzowego wykonywana w zakładach na dużych populacjach tuczników, pomocna w ustaleniu genotypów o najlepszej jakości, promowanej w skupie żywca. Instytut posiada znaczną osiągnięcia w dziedzinie doskonalenia technologii produkcji mięsa jagnięcego. Jest to kierunek, który uznaje się jako przyszłościowy dla Polski w ramach wspólnej polityki rolnej Unii Europejskiej. Przemysł mięsny uzyska w najbliższych latach określoną ofertę w zakresie genotypu, sposobu produkcji jagniąt oraz technologii produkcji mięsa kulinarne.

W najbliższych latach przewiduje się kontynuację współpracy z zakładami przemysłu mięsnego w zakresie techniki i technologii produkcji z mięsa czerwonego i drobiowego (wędlin, wyrobów garmażeryjnych i konserw), stosowania dozwolonych substancji dodatkowych dopuszczonych w produkcji przetworów mięsnich i drobiowych, zasad znakowania i etykietowania przetworów mięsnich, identyfikacji pochodzenia mięsa wołowego, metodyk badań fizycznych, chemicznych i mikrobiologicznych stosowanych do kontroli jakości produktów mięsnich, analiz uwarunkowań i skutków prawnych wprowadzania przepisów prawa żywnościowego Unii Europejskiej dotyczących przemysłu mięsnego i drobiarskiego w Polsce.

Od wielu lat Instytut organizuje DNI PRZEMYSŁU MIĘSNEGO, które w połączeniu z Seminarium Naukowo-Technicznym „Nauka Praktyce” skupiają kadrę inżynieryjno-techniczną z zakładów mięsnym oraz naukową z wyższych uczelni i placówek naukowo-badawczych. W ramach DNI PRZEMYSŁU MIĘSNEGO prowadzony jest konkurs „Produkt najwyższej jakości w przemyśle mięsnym”, który spełnia istotną rolę w promocji jakości produktów przetwórstwa mięsnego. Konkurs ma ogólnokrajowy charakter i w każdej edycji startuje kilkadziesiąt zakładów różnej wielkości z terenu całej Polski. Z tego względu z całą pewnością spełnia on rolę integracyjną dla przemysłu.
IPMiT prowadził intensywną działalność szkoleniową. Co roku prowadzi się kilka kursów szkoleniowych z zakresu klasyfikacji tusz, metod analitycznych itp. Współpraca z przemysłem w tym zakresie zostanie utrzymana i poszerzona o nowe zagadnienia np. w zakresie nowych technologii i procesów jednostkowych, nowych rozwiązań technicznych, szkolenia załóg i personelu kierowniczego w zakresie Dobrzej Praktyki Produkcyjnej, auditów wewnętrznych itp.

Współpraca z zakładami przemysłu tłuszczowego w najbliższych latach będzie dotyczyła zagadnień technologicznych jak i analityczno-jakościowych wytwarzanych produktów tłuszczowych – olejów, tłuszczów cukierkowych, margaryn i miksów w blokach do przetwórstwa oraz margaryn dla odbiorcy indywidualnego.

Badania dotyczące jakości wytwarzanych produktów, obejmujące szeroki zakres badań, w tym oznaczanie zawartości metali ciężkich, pestycydów, wielopierścieniowych węglowodorów aromatycznych (WWA), związków po-wstających z utleniania tłuszczów i innych są prowadzone obecnie i będą kontynuowane w najbliższych latach dla Zakładów Przemysłu Tłuszczowego S.A. w Warszawie, Zakładów Tłuszczowych „Bielmar” Sp. z o.o. w Bielsku Białej, Zakładów Tłuszczowych Sp. z o.o. w Bodaczowie koło Zamościa, Zakładów Przemysłu Tłuszczowego „Olvit” Sp. z o.o. w Gdańsku, Unifet Sp. z o.o. Gliwice, Raisio Polska Foods Sp. z o.o. w Karczewie, Oleje Sudeckie Sp. z o.o. w Burkatowie koło Lubachowa, „Mosso” Puchały oraz dla wielu mniejszych wytwórców oleju rzepakowego tłoczonego. Ważnym planowanym przedsięwzięciem jest wprowadzenie w zakładach tłuszczowych krajowej produkcji nowej generacji ziem bielących o wysokiej aktywności, zawierających specjalne gatunki węgla aktywnego umożliwiającego usuwanie z olejów i tłuszczów niebezpiecznych dla zdrowia związków wielopierścieniowych (WWA: m.in. benzo(a)piren) oraz pozostałych czternaście związków wymienionych na liście Komitetu Nauki ds. Żywności Komisji Europejskiej). W związku z tym przedsięwzięciem planowane są badania na liniach w tłuszczowych zakładach przemysłowych. Inną tematyką przewidzaną do współpracy z zakładami tłuszczowymi w najbliższych latach jest tzw. głębokie odszlamowanie oleju rzepakowego mające na celu maksymalne usunięcie z nich fosfolipidów czyli związków, które pozostawione w oleju rafinowanym w nadmiernie ilości wpływają niekorzystnie na jego oksydację i cechy sensoryczne. Przewidziane do współpracy są Zakłady Tłuszczowe w Bodaczowie dysponujące dużej mocy tłoczni nasion rzepaku oraz Zakłady w Bielsku-Białej.
STO LAT Instytutu

Od wielu lat organizowane są Międzynarodowe Konferencje Tłuszczowe „Postępy w Technologii Tłuszczów Roślinnych”, która skupiają, oprócz kadry naukowej, kierownicze i technologiczne kadry z zakładów przemysłowych. Tematyka tych cyklicznych konferencji porusza istotne zagadnienia związane z nowoczesną technologią, analityką, problemami żywieniowymi, nowoczesnymi produktami krajowymi i światowymi. Konferencje te, organizowane przez instytut od kilkunastu lat, cieszą się uznaniem w branży tłuszczowej i będą kontynuowane w najbliższych latach. Znaczący wkład pracy wnieśli pracownicy Instytutu dr inż. S. Ptasznik, dr T. Płatek, dr K. Mińkowski.

Stan aktualny i perspektywy rozwoju Instytutu

Od 1 sierpnia 2009 roku Instytut Przemysłu Mięsnego i Tłuszczowego został włączony do Instytutu Biotechnologii Przemysłu Rolno-Spożywczego. Działania Instytutu Przemysłu Mięsnego i Tłuszczowego kontynuuje Oddział Technologii Mięsa i Tłuszczu.
ODDZIAŁ CUKROWNICTWA

Dyrektor
dr inż. Andrzej Baryga

ul. Inżynierska 4, 05-084 Leszno k/Błonia

Zakład Analityki Cukrowniczej i Technologii Cukru działający od roku 2009 w Oddziale Cukrownictwa Instytutu Biotechnologii Przemysłu Rolno-Spożywczego ma 114-letnią historię.

Prekursorem Zakładu było CENTRALNE LABORATORIUM CUKROWNICZE (CLC), utworzone jako pierwsze w Europie w dniu 26 maja 1898 r. na posiedzeniu przedstawicieli 27 cukrowni i rafinerii z Królestwa Polskiego.

Od pierwszych lat swego istnienia CLC wykazywało wielką prężność działania. Świadczą o tym podejmowane tematy badawcze ścisłe związane z problemami technologii i analityki cukrowniczej, a również ścisłe kontakty z cukrowniami związkowymi. Placówka ta przyczyniła się do wyrównania po-
ziomu technicznego przemysłu cukrowniczego Królestwa Polskiego z poziomem cukrownictwa zachodniej Europy. Zasługą CLC było masowe wprowadzenie w cukrowniach stacji siarkowania soków, wyposażonych w piec do spalania siarki, oraz ulepszenia w sposób prowadzenia procesu defekosaturacji. Prace CLC przyczyniły się do poznania, a następnie świadomego kierowania procesami w takich zagadnieniach jak: granice wysłodzenia krajanki buraków cukrowych w procesie dyfuzji, rola potasu w produkcji i przerobie buraków, oznaczanie alkaliów w produktach cukrowniczych, wpływ wyższych temperatur na rozkład sacharozy i wiele innych.

I wojna światowa zahamowała rozwój CLC oraz całego cukrownictwa. Stopniowa stabilizacja przemysłu cukrowniczego w odrodzonej Polsce, wywołała zwiększone zainteresowanie sfer cukrowniczych działalnością CLC. Wspólnym wysiłkiem dokonano rekonstrukcji placówki, zwiększając znacząco wyposażenie w sprzęt oraz aparaturę pomiarową i kontrolną. Zwiększone fundusze na cele badawcze, co pozwoliło na zatrudnienie większej liczby personelu, jak również na rozszerzenie zakresu badań. CLC podejmowało aktualne dla przemysłu problemy z dziedziny technologii przerobu buraków, aparatury cukrowniczej oraz kontroli chemicznej. Dorobek naukowy z tego okresu znalazł odzwierciedlenie w licznych artykułach i obszernych opracowaniach publikowanych w specjalnych rocznikach „Prace Centralnego Laboratorium Cukrowniczego”.

Olbrzymi dorobek naukowo-badawczy, dydaktyczny i publikacyjny zgromadzony przez pracowników Centralnego Laboratorium Badawczego w ciągu 30 lat jego działalności został doceniony i w dniu 1 października 1927 r. powołano jednostkę naukowo-badawczą o wyższej randze jaką był Instytut Przemysłu Cukrowniczego (IPC). Organem kierującym IPC ustanowiono Kuratorium, na czele którego stanął prezes inż. Stanisław Grzybowski, honorowy doktor nauk technicznych Politechniki Warszawskiej.

Spoglądając z perspektywy kilkudziesięcioleci lat na osiągnięcia Centralnego Laboratorium Cukrowniczego, a następnie Instytutu Przemysłu Cukrowniczego w okresie międzywojennym, należy podkreślić, że założony program był w pełni realizowany. Świadczy o tym ogromny dorobek naukowy, ściśła współpraca Instytutu z cukrowniami wyrażająca się wprowadzeniem do prak-
tyki przemysłowej nowych rozwiązań technologicznych jak i organizacyjno-
technicznych.

Zarówno inwencja twórcza i znaczny autorytet kierowników, jak również zapal i wytrwałość pracowników poszczególnych specjalności, przyczyniły się do tego, że Instytut swoim dorobkiem naukowo-badawczym i wielostronnym poradnictwem dla przemysłu zdobył sobie uznanie nie tylko wśród cukrowników polskich, lecz i w naukowych cukrowniczych ośrodkach zagranicznych. Świadczą o tym tytuły prac naukowych, referatów i sprawozdań opublikowanych na łamach Gazety Cukrowniczej, ukazującej się w tym okresie co tydzień, jak i opracowania książkowe, na przykład kolejne tomy „Prace Centralnego Laboratorium Cukrowniczego” oraz dwa wydania „Przepisów do kontroli fabrykacji w cukrowniach i rafineriach” i inne.

Praca naukowo-badawcza wymagała odpowiednich środków finansowych. Takie wsparcie uzyskiwał IPC od Rady Naczelnej Polskiego Przemysłu Cukrowniczego oraz Banku Cukrownictwa.

Dalszy rozwój Instytutu został przerwany przez wybuch II wojny światowej. Koszmarne lata okupacji rozprosyły większość personelu i spowodowały znaczne straty w ludziach, zmarłych w ciężkich warunkach okupacji oraz pomordowanych w więzieniach i obozach koncentracyjnych. Zginął na „Pawiaku” prof. Kazimierz Smoleński.

Dalsze straty Instytut poniósł w Powstaniu Warszawskim w 1944 roku, w którym uległa zdziesiątkowaniu nieliczna już kadra naukowa oraz została zniszczona siedziba i mienie materialne Instytutu: cały dobytek aparatury badawczej, kilkutysięczny księgozbiór i inne bezcenne materiały informacyjne dotyczące cukrownictwa. Gmach Instytutu przy ulicy Rakowieckiej z całym dobytkiem został spalony. Działalność IPC została wznowiona na terenie Cukrowni Józefów (25 km od Warszawy).

Po zakończeniu wojny, przystąpiono do organizowania Instytutu jako placówki podlegającej Centralnemu Zarządowi Przemysłu Cukrowniczego. Po mimo szczupłości personelu i braku wyposażenia w podstawową aparatwę pomiarową kontrolną i badawczą, Instytut współpracuje z przemysłem, głównie w dwóch kierunkach: poradnictwa technicznego dla cukrowni odbudowywanych ze zniszczeń wojennych i udzielania pomocy w organizacji kontroli chemiczno-technologicznej oraz szkolenia nowych kadr kandydatów na chemików zmianowych, mechaników i elektryków angażowanych do pracy w uruchamianych fabrykach.
Oddział Cukrownictwa
Oddział Cukrownictwa

Zasadniczą zmianą w życiu i rozwoju Instytutu było przywrócenie mu, Uchwałą Rady Ministrów z dnia 2 sierpnia 1954 r., praw samodzielnego placówki pod starą nazwą Instytut Przemysłu Cukrowniczego. Od tej pory Instytut zaczął rozwijać swoją działalność w oparciu początkowo o cztery, a następnie o pięć zakładów naukowo-badawczych: Buraka Cukrowego, Technologii Cukru, Mechaniczno-Energetyczny, Analityczny i Ekonomiki.

Przewidzianą w tym nowym układzie znacznie zwiększoną kadrę naukowo-inżynieryjną, kompleutowano spośród doświadczonych specjalistów prze- niesionych służbowo z przemysłu, młodzi inżynierowie przyszli z Katedry Cukrownictwa Politechniki Łódzkiej, a technicy z Liceum Toruńskiego oraz Liceów Chemicznych.

Powołano również Radę Naukową, której głównym zadaniem było inicjowanie i opiniowanie prac naukowo-badawczych, opieka nad rozwojem kadr oraz ocena całokształtu działalności Instytutu.

Opracowany dla nowych warunków organizacyjnych, perspektywiczny program działania Instytutu obejmował najważniejsze dla przemysłu kie-runki: obniżenie kosztów własnych produkcji, zwiększenie wydajności cukru z buraków, doskonalenie jakości produkcji oraz zmniejszenie uciążliwości prac ciężkich i pracochłonnym.

Do ich realizacji włączyły się wszystkie zakłady Instytutu, każdy w zakresie swojej specjalności.

Zakład Buraka Cukrowego koncentrował swoją działalność na ochronie buraków przed chorobami i szkodnikami w czasie wegetacji oraz udoskonalaniu sposobów przechowywania surowca w celu zachowania jego wartości przerobowej.

Zakład Technologii Cukru rozwinął działalność w dziedzinie podnoszenia potencjału produkcyjnego i udoskonaleniu procesów na poszczególnych sta-
cjach przerobowych, począwszy od dyfuzji ciągłej, przez stację oczyszczania soków, aż do krystalizacji i gotowania cukrzyc, ze specjalnym uwzględnieniem sposobów zmierzających do ciągłości i zautomatyzowania przebiegu produkcji. Dużą część potencjału badawczego przeznaczono również do badań nad racjonalną gospodarką wodną w cukrowniach, a także podjęto tematy z dziedziny mikrobiologii w procesie technologicznym.

Zakład Mechaniczno-Energetyczny rozwinął działalność w zakresie produkcji i gospodarki nośnikami energii oraz termodynamiki procesów technologicznych. Włączył się do prac normalizacji i typizacji procesowej aparatury oraz urządzeń cukrowniczych, a także mechanizacji i automatyzacji procesów jednostkowych.

Zakład Analityczny rozpoczął działalność w zakresie: opracowywania nowych, szybkich metod chemicznych oznaczeń kontrolnych, ocen przydatności nowych przyrządów stosowanych w analityce, racjonalnego wykorzystania produktów ubocznych.

Zakład Ekonomiki rozwinął działalność w trzech podstawowych kierunkach: ekonomiki surowca, ekonomiki produkcji oraz prognoz rozwoju przemysłu cukrowniczego.

Należy również podkreślić, że począwszy od 1954 roku następowało dalsze zespołenie Instytutu z przemysłem, wyrażające się nie tylko rozwiązywaniem problemów najbardziej istotnych dla cukrowni, ale również rozwinęło się na szeroką skalę poradnictwo techniczne, szczególnie w okresach kampanijnych.

Nawiązano bliższe kontakty z pokrewnymi instytucjami i uczelniami, rosła i stabilizowała się kadra pracownicza. Wzrastało zainteresowanie wynikami prac Instytutu, coraz częściej publikowanymi w Gazecie Cukrowniczej i kwartalniku Prace Instytutów i Laboratoriów Badawczych Przemysłu Spożywczego. Zostały wznowione lub nawiązane kontakty z naukowo-badawczymi placówek zagranicznych.

Te sprzyjające warunki dla wszechstronnego rozwoju Instytutu wyrażające się między innymi wzrostem liczebności kadry początkowy od 51 osób w 1954 roku do 120 osób w początkach lat 70., skłoniły przemysł cukrowniczy do zaakceptowania postulatów Instytutu w sprawie budowy Ośrodka Doświadczalnego przy Cukrowni Michałów w Lesznie. Ośrodek ten, pomyślny jako pierwszy etap powiększenia bazy materialnej Instytutu, został oddany do eksploatacji w 1970 roku.

W latach 1970–1980 struktura organizacyjna Instytutu obejmowała cztery zakłady naukowo-badawcze: Zakład Buraka Cukrowego, Zakład Technologii
Oddział Cukrownictwa

Cukru, Zakład Mechaniczno-Energetyczny oraz Zakład Analityki Cukrowniczej.

W latach tych wdrożono istotne rozwiązania do praktyki rolniczej i przemysłowej.

W dziedzinie surowcowej opracowano i wdrożono: metody nowoczesnego przechowywania buraków, prognozowania przebiegu procesu technologicznego, ochrony roślin i wiele innych.

W zakresie technologii produkcji cukru opracowano i powszechnie wdrożono: sposób prawidłowego prowadzenia dyfuzji ciągłej w ekstraktorach korzytnych, technologię oczyszczania soku otrzymanego z buraków o niepełnej wartości technologicznej.

W zakresie gospodarki wodno-ściekowej opracowano i wdrożono: technologię oczyszczania ścieków cukrowni metodą fermentacji metanowej z odzyskiem biogazu i osadu czynnego, sposoby racjonalizacji zużycia świeżej wody.

W zakresie energetyki opracowano i wdrożono: układ cieplno-technologiczny z pojemnością cieplną i wyparką o podwyższonej krotności odparowania, warnik cukrzycy I o skróconym czasie gotowania waru oraz sposoby intensyfikacji przerób buraków.

W zakresie analityki cukrowniczej opracowano wiele nowych metod analitycznych: oznaczania rzeczywistej zawartości sacharozy w produktach cukrowniczych metodami rozcieńczeń izotopowych i enzymatycznymi, oznaczania cukrów i niecukrów metodami chromatografii gazowej i wysokociśnieniowej cieczowej. Popularyzowano i wdrażano nowe metody analityczne zalecane przez Międzynarodową Komisję Ujednolicenia Metod Analitycznych ICUMSA.

W zakresie ekonomiki produkcji cukru w przemyśle znalazły zastosowanie takie opracowania Instytutu jak: kryteria wyboru najefektywniejszych inwestycji modernizacyjnych, statystyczna metoda prognozowania plonów buraków cukrowniczych, prognozowanie rozwoju przemysłu cukrowniczego.

Poważne osiągnięcia do odnotowania na koncie Instytutu istnieją w zakresie wdrażania w przemyśle nowych maszyn i urządzeń cukrowniczych. Pracownicy Instytutu będąć jako autorzy danych wyjściowych do konstruowania nowych urządzeń będą też przez ocenę prototypów i ich usprawnienie, są współtwórcami całego szeregu nowoczesnych urządzeń i aparatów.

Instytut Przemysłu Cukrowniczego był prekursorem wprowadzania do przemysłu cukrowniczego automatyki, początkowy od instalowania pojedyn-
czych obwodów automatycznego sterowania, przez układy odcinkowe aż do pełnej automatyzacji cukrowni z centralną dyspozytornią.

W latach 1990–2011 przy udziale pracowników Instytutu do praktyki gospodarczej wprowadzono ponad 50 zadań, które dotyczyły między innymi: zastosowania mieszaniny fungicydów, inhibitorów wzrostu i polimerów do ograniczenia strat w burakach cukrowych podczas ich długookresowego przechowywania, zastosowania ciekłych krajowych preparatów obniżających lepkość cukrzyc w procesie krystalizacji i wirowania cukru, uruchomienia produkcji cukru barwnego – kryształu złocistego – do konsumpcji, uruchomienia produkcji cukru płynnego inwertowanego, zastosowania energooszczędnego układu cieplno-technologicznego „wyparka – zasobnik Ruthsa”, o podwyższonej krotności odparowania wyparki, wykorzystania biogazu uzyskiwanego w procesie fermentacji ścieków cukrowniczych, do wytwarzania energii elektrycznej, zastosowania nowej technologii biologicznego oczyszczania ścieków cukrowniczych, zapewniającej skuteczną eliminację związków biogennych, intensywnego oczyszczania ścieków cukrowniczych z zastosowaniem procesu fermentacji metanowej i napowietrzenia z osadem czynnym, hodowli glonów Chlorella do intensyfikacji procesu oczyszczania ścieków cukrowniczych i technologii fermentacji metanowej odpadów cukrowniczych.

Instytut Przemysłu Cukrowniczego, oprócz prowadzenia badań naukowych i prac badawczo-rozwojowych oraz wdrażania ich wyników do praktyki gospodarczej, realizował szeroki wachlarz prac o charakterze usługowym. Prace te swoim zakresem obejmowały: opracowywanie ekspertyz, opinii, ocen oraz udzielanie konsultacji w zakresie problematyki objętej działalnością Instytutu, wykonywanie szerokiej gamy analiz dotyczących między innymi: gleby, buraków cukrowych, półproduktów i produktów przemysłu cukrowniczego, materiałów pomocniczych, a także wód, ścieków i osadów biologicznych, wykonywanie specyficznych odczynników chemicznych stosowanych w cukrowniach do kontroli przebiegu procesu technologicznego i jakości produkcji, prowadzenie szkoleń dla kadr przemysłu cukrowniczego z zakresu problematyki: agrotechniczno-surowcowej, technologicznej, energetyczno-cieplnej, analityki cukrowniczej, oczyszczania ścieków i minimalizacji zagrożeń ekologicznych.

Na uwagę zasługuje też działalność publicystyczna, obejmująca setki publikacji w czasopismach fachowych, a także wydawnictwa własne i monografie książkowe, z których należy wyliczyć m.in. „Prace Centralnego Laboratorium Cukrowniczego”, „Przepisy do kontroli fabrykacji w cukrowniach i rafine-
Oddział Cukrownictwa

riach”, „Proekologiczna gospodarka wodno-ściekowa cukrowni”, „Źródła strat cukru i możliwości ich zminimalizowania”, „Strategiczne problemy techniczne i technologiczne w cukrowniach oraz sposoby ich rozwiązywania”, „Nowoczesne metody produkcji i ochrony buraków cukrowych”, „Metody badań zalecane w analityce przemysłu cukrowniczego w aspekcie wymagań Unii Europejskiej”, „Przewodnik do wdrażania systemu HACCP w przemyśle cukrowniczym”, „Doskonalenie procesu oczyszczania soku surowego w cukrowniach”, „Energetyka cieplna cukrowni, „Przewodnik Dobrej Praktyki Produkcyjnej i Dobrej Praktyki Higienicznej dla Cukrowni”, „Zagadnienia mikrobiologiczne procesu produkcji cukru z buraka cukrowego”, „Burak cukrowy, uprawa, ochrona, przechowywanie, gospodarka surowcowa”, „Rozwój przemysłu cukrowniczego w aspekcie wdrażania systemów jakości oraz doskonalenia jakości żywności, pasz i ochrony środowiska”

Z wielu wymiernych osiągnięć Instytutu na podkreślenie zasługuje także uzyskanie uprawnień:

→ wpisanie na listę rzeczoznawców – osób prawnych – Ministerstwa Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa w specjalności: ochrona wód w branży przemysłu cukrowniczego;

→ uzyskanie upoważnienia Instytutu Ochrony Roślin do prowadzenia badań skuteczności działania środków ochrony roślin w celu dopuszczenia tych środków do obrotu i stosowania w następującym zakresie: grupa środków ochrony roślin – herbicydy, adiawnty, insektycydy, regulatory wzrostu i fungicydy, rodzaje doświadczeń polowe, uprawy – burak cukrowy;

→ uzyskanie certyfikatu akredytacji laboratoryów badawczych nr AB 803, udzielnego przez Polskie Centrum Akredytacji w dniu 11.07.2007 r.

Pozytywną ocenę działalności Instytutu Przemysłu Cukrowniczego potwierdzają wyróżnienia i nagrody przyznawane zespołom badawczym za wybitne osiągnięcia twórcze w zakresie nauki i postępu technicznego. W okresie ostatnich lat były to nagrody w dziedzinach: gospodarki surowcowej, technologii produkcji cukru i ochrony środowiska naturalnego przyznawane przez: Ministra Rolnictwa i Gospodarki Żywnościowej, Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa, Ministra Gospodarki Przestrzennej i Budownictwa.

Historię Instytutu tworzyli ludzie, którzy swoją działalnością i twórczą inwencją, zdolnościami organizacyjnymi, pasją badawczą, a szczególnie umiłoowaniem cukrownictwa, wytyczali kierunki działania. Spośród nich w szczególności należy wymienić:

prof. Tomasza Wolskiego – znakomitego specjalistę zagadnień ochrony środowiska, a zwłaszcza biotechnologii oczyszczania ścieków, wspaniałego organizatora i wychowawcy wielu specjalistów,

dr. Mieczysława Kowalskiego – doświadczonego chemika cukrownika, współtwórcy znanej w środowisku defekacji wstępnej,

inż. Sylwestra Dębskiego – organizatora i kierownika Zakładu Mechanicznego, wybitnego znawcy aparatury i urządzeń cukrowniczych, autora wielu prac podstawowych,

doc. Władysława Żero – niezwykle utalentowanego naukowca, który, pozostawił po sobie wiele cennych prac badawczych, wśród których na pierwszym miejscu należy wymienić prace dot. procesów filtracyjnych,

doc. Aleksandra Żelaznego – dyrektora Głównego Instytutu Przemysłu Rolnego i Spożywczego, kierownika Zakładu Technologii Cukru. Jego niezwykle cenne dla przemysłu prace związane były z dziedziną krystalizacji i oczyszczania klarówek,

doc. dr. Stanisława Gawrycha – kierownika Zakładu Technologii Cukru, który pozostawił po sobie niezwykle cenne opracowania dotyczące technologii przerobu buraków o niepełnej wartości technologicznej,

inż. Jerzego Zaleskiego – kierownika Zakładu Analityki, twórcy kolorymetrycznej metody oznaczania inwerty,

wielu innych.

Z dniem 1 lipca 2009 r. na mocy decyzji Ministra Rolnictwa i Rozwoju Wsi z dnia 15 czerwca 2009 roku (Dz.U. z 2009 r., nr 99, poz. 831) nastąpiło
Oddział Cukrownictwa

połączenie Instytutu Przemysłu Cukrowniczego z Instytutem Biotechnologii Przemysłu Rolno-Spożywczego.

Instytut Przemysłu Cukrowniczego działa jako: **Oddział Cukrownictwa Instytutu Biotechnologii Przemysłu Rolno-Spożywczego (OC IBPRS)**

W ramach Oddziału Cukrownictwa funkcjonuje jeden zakład: Zakład Analityki Cukrowniczej i Technologii Cukru (ZAC i TC), złożony z 4 pracowni: Pracowni Analityki Cukrowniczej (PAC), Pracowni Mikrobiologii (PM), Pracowni Technologii Cukru (PTC) i Pracowni Gospodarki Wodą i Ochrony Środowiska (PGW i OŚ).

Liczebność zespołu pracowników uległa znacznej redukcji. W latach 70. była najwyższa i wynosiła 120 osób, a obecnie wynosi 14 osób, w tym: 6 pracowników naukowych 4 inżynieryjno-technicznych, 1 biblioteki i działalności ogólno-technicznej, 2 administracyjno-ekonomicznych oraz 1 na stanowisku robotniczym.

Zakład Analityki Cukrowniczej i Technologii Cukru posiada odpowiednią bazę do prowadzenia badań: dobrze wyposażone laboratoria, przystosowane do wymagań akredytacyjnych o łącznej powierzchni 370 m².

W perspektywie planuje się wzmacnienie kadry merytorycznej Zakładu Analityki Cukrowniczej i Technologii Cukru i skoncentrowanie się na działalności badawczej obejmującej:

→ Opracowanie sposobów poprawy efektywności przebiegu procesów jednostkowych produkcji cukru;
→ Wprowadzenie do produkcji nowych asortymentów cukru;
→ Opracowanie wytycznych technologicznych do przerobu buraka cukrowego w zależności od prognozowanej jakości surowca;
→ Opracowanie wytycznych technologicznych do poprawy jakości fizyko-chemicznej i mikrobiologicznej cukru oraz minimalizacji strat produkcyjnych;
→ Ocenianie aktywności i skuteczności działania środków chemicznych stosowanych w procesie technologicznym produkcji cukru;
→ Opracowanie schematów racjonalnego gospodarowania zasobami świeżej wody w cukrowniach;
→ Doskonalenie technologii mechanicznego, chemicznego i biologicznego oczyszczania ścieków cukrowniczych;
→ Doskonalenie produkcji wysokoenergetycznego biogazu z odnawialnych źródeł energii;
→ Ustalanie zagrożeń wynikających z oddziaływania cukrowni na środowisko naturalne i opracowanie wytycznych dotyczących działań proekologicznych zapobiegających tym zagrożeniom;
→ Racjonalizowanie gospodarki odpadowej w przemyśle spożywczym.

Działalność usługowa obejmowała będzie wykonywanie prac analitycznych, ocen i ekspertyz z zakresu analityki cukrowniczej, mikrobiologii cukrowniczej, ochrony środowiska naturalnego, gospodarki surowcowej i technologii przetwarzania korzeni buraków cukrowych na cukier.

Planuje się także rozwinięcie działalności szkoleniowej obejmującej prowadzenie szkoleń dla kadr przemysłu cukrowniczego z zakresu doskonalenia gospodarki surowcowej, optymalizacji technologii przetwarzania korzeni buraków cukrowych na cukier, doskonalenia jakości fizykochemicznej i mikrobiologicznej gotowych produktów oraz obsługi technologicznej i analitycznej biologicznych oczyszczalni ścieków.

Zarówno Centralne Laboratorium Cukrownicze, jak Instytut Przemysłu Cukrowniczego były finansowane w głównej mierze przez przemysł cukrowniczy.

Centralne Laboratorium Cukrownicze było finansowane niemal w całości przez 27 cukrowni i rafinerii z Królestwa Polskiego.

Instytut Przemysłu Cukrowniczego był finansowany przez przemysł w różny sposób:
– początkowo (przed II wojną światową) przez Radę Naczelną Polskiego Przemysłu Cukrowniczego oraz Bank Cukrownictwa. Dotacje Rady Naczelnnej i Banku Cukrownictwa stanowiły ok. 70% sumy budżetowej;
– bezpośrednio po II wojnie światowej – przez Centralny Zarząd Przemysłu Cukrowniczego. Przyznawane dotacje stanowiły ok. 60% sumy budżetowej;
– w latach 60., 70. i 80. ubiegłego wieku – przez Zjednoczenie Przemysłu Cukrowniczego i Przedsiębiorstwa Państwowe, grupujące po kilka cukrowni, z funduszu przeznaczonego na postęp naukowo techniczny w cukrowniach. Środki przeznaczane były na realizację corocznie ustalanej planu prac naukowo-badawczych i badawczo-rozwojowych i stanowiły ok. 60% sumy budżetowej;
ustalana była przez Radę Przedstawicieli Przemysłu Cukrowniczego powołanej na spotkaniu dyrektorów 48 cukrowni w dniu 5 lipca 1990 r. Rada ta pełniła rolę organu upoważnionego do podejmowania w imieniu wszystkich cukrowni wiążących decyzji dotyczących współpracy z IPC w zakresie zarówno merytorycznym, jak i finansowym. Wysokość środków finansowych przewidzianych na realizację programu stanowiła ok. 60% sumy budżetowej.

Po zakończeniu działalności Rady Przedstawicieli Przemysłu Cukrowniczego w 2004 roku rozpoczął się okres trudności z domknięciem sumy budżetowej. Działalność naukowo-badawcza musiała zostać ograniczona ze względu na konieczność szeroko zakrojonej działalności typowo usługowej. Przychody z tej działalności muszą stanowić prawie 50% sumy budżetowej.
ZWIĄZKI ZAWODOWE

→ Związek zawodowy NSZZ „Solidarność” przy IBPRS
Przewodnicząca Komisji Zakładowej: Zofia Gaczyńska

Podstawowym zadaniem NSZZ „Solidarność” jako związku zawodowego działającego na terenie IBPRS, jest reprezentowanie interesów wszystkich pracowników Instytutu wobec pracodawcy poprzez obronę ich godności, praw oraz interesów materialnych i moralnych, zarówno zbiorowych jak i indywidualnych. Komisja Zakładowa Związku współuczestniczy w tworzeniu korzystnych warunków pracy, bytu i wypoczynku pracowników. Prowadzone w tym zakresie negocjacje z Dyrektorem IBPRS mają szczególne znaczenie przy tworzeniu Układu Zbiorowego Pracy i przestrzeganiu zawartych w nim postanowień. Aktywność Związku przejawia się również poprzez uczestnictwo w Radach Naukowych, Kolegiach Dyrektorowych, Komisjach towarzyszących...
Związek Zawodowy Pracowników Łódzkiego Oddziału IBPRS

Spożywczego. Związek funkcjonuje do dnia dzisiejszego w IBPRS Oddział Chłodnictwa i Jakości Żywności, współpracując z drugim ZZ działającym na terenie Łódzkiego Oddziału IBPRS oraz pozostałymi ZZ z Instytutu IBPRS.

PRZYSZŁOŚĆ

Wszystkie działania IBPRS są zdeterminowane głównym, statutowym celem jakim jest służyenie polskiej gospodarce żywnościowej. Rozumie się przez to dbałość o rozwój nowych energooszczędnych i bezpiecznych dla środowiska technologii. Jednocześnie rolą instytutu badawczego jest troska o zdrowie konsumenta czyli monitoring jakości wytwarzanych produktów spożywczych oraz opracowanie nowych, innowacyjnych technologii i produktów funkcjonalnych. Instytut pracujący na potrzeby gospodarki musi wyważyć proporcje między pracami badawczymi, o pogłębionym charakterze naukowym, a pracami aplikacyjnymi na użytek gospodarki. Ten aspekt dotyczy również charakteru publikacji. na ile maja to być opracowania o wysokich notowaniach w rankingach, a na ile publikacje użyteczne dla średniej kadry kierowniczej zakładów produkcyjnych. Na charakter publikacji duży wpływ ma sposób finansowania działalności instytutów przez budżet państwa. Charakter publikowanych prac jest w dużej mierze determinowany sposobem ich postrzegania przez decydentów finansowania nauki.

Należy przewidywać, że finansowanie instytutów będzie w coraz mniejszym stopniu udziałem budżetu państwa. Powinno wzrastać finansowanie przez instytucje gospodarcze. To zależeć będzie od zmian legislacyjnych stymulujących współpracę gospodarki z nauką. Skuteczność właściwego wykorzystania środków finansowych przez Instytut będzie zależała od dwóch podstawowych czynników:
- poziomu kadry naukowej,
- odpowiedniej infrastruktury.

W odniesieniu do pracowników naukowych należy oczekiwać znacznego i szybkiego wzrostu liczby stopni i tytułów naukowych. Nie jest to sprawa prosta. W odróżnieniu od innych pionów nauki (szkoły wyższe, instytuty PAN) pracownicy instytutów resortowych wiele czasu przeznaczają na pozywniwanie środków pozabudżetowych. Wymaga to wielu starań, z wyjazdami w teren, włącznie. Nie może to jednak usprawiedliwiać odkładania awansów naukowych w czasie.
Jedną z dróg do podnoszenia kwalifikacji naukowych jest pozyskiwanie młodych pracowników ze stopniami naukowymi. Dotyczy to zwłaszcza specjalistów z nowych kierunków badawczych m.in. biologii molekularnej. Ci młodzi, pełni współczesnej wiedzy i zapalu ludzie są przyszłością Instytutu.

Kadra naukowa jest trzonem jednostki badawczej. Wymaga troski i zapewnienia odpowiedniego poziomu materialnego. Należałoby stworzyć system, który będzie premiował zdolności, pracowitość i skuteczność oraz stymulował wysiłki do podnoszenia kwalifikacji.

Dobra kadra musi mieć zapewnione odpowiednie warunki pracy. Oznacza to wysokiej klasy aparaturę, przyjazne otoczenie i profesjonalną obsługę służb pomocniczych. W setnym roku swojego istnienia IBPRS może poszczycić się zasobami znakomitej aparatury badawczej. To nie może jednak uspokajać. Współczesna aparatura badawcza szybciej starzeje się moralnie niż fizycznie i ciągle trzeba ją odnawiać. Stalej troski wymagają budynki Instytutu o długim okresie eksploatacji. Trzeba je ciągle dostosowywać do zwiększających się wymagań pracowników i norm użytkowania.

Zmieniające się stosunki własnościowe w przemyśle spożywczym oraz jego struktura będzie wymagać od Instytutu dostosowania organizacji do nowych wyzwań. Gałęzie przemysłu, dla których Instytut powstał 100 lat temu mają teraz mniejsze znaczenie niż wówczas. Rozwinęły się inne, które Instytut wspomagał, będą powstawać nowe, do których Instytut będzie musiał dostosować swoją tematykę badań.

Podążając w tym kierunku uruchamiany jest kierunek badań w zakresie mleczarstwa oraz przewidziany jest specjalizacji winańskiej. Przemyslenia wymaga zmodernizowania istniejącej struktury IBPRS. Nawiązująca i krzyżująca się tematyka badań między zakładami wymaga uporządkowania.

Przyszłość IBPRS to wzrost aktywności w obszarze doskonalenia jakości produktów żywnościowych, ze szczególnym naciskiem na bezpieczeństwo żywności i przy wykorzystaniu w dużym stopniu metod biotechnologicznych, a także technologii zapewniających wysoką efektywność ekonomiczną i ochronę środowiska. Połączenie w ciągu pięciu lat dziesięciu jednostek badawczych, funkcjonujących wcześniej samodzielnie, wymaga nowego podejścia do współpracy z przemysłem, kreowania wizerunku firmy, a co za tym idzie ekspansywnych działań marketingowych, promujących opracowanie nowych, innowacyjnych technologii i produktów.
Przyszłość

Powstanie tak dużej, nowej jednostki wymagać będzie wielu dalszych działań konsolidacyjnych i restrukturyzacyjnych, dostosowujących zakres działania do potrzeb gospodarki. Działalność naukowo-badawcza wymaga aktywnego włączenia się w europejskie struktury badań.

Podniesienie roli i rangi IBPRS w badaniach naukowych, a także w przemyśle żywnościowym w kraju i na arenie międzynarodowej planujemy osiągnąć przez:

- rozszerzenie obszaru działania Instytutu o nowe obszary – mleczarstwo, winiarnictwo,
- podwyższenie efektywności prac rozwojowych co będzie się wyrażać liczbą i efektami wdrożeń,
- wzrost prestiżu Instytutu,
- włączenie Instytutu w światowy system badań naukowych.

Efektem działań powinno być:
- wzmocnienie potencjału badawczego Instytutu,
- intensyfikacja działań komercjalizacyjnych,
- zwiększenie liczby młodych pracowników o wysokich kwalifikacjach formalnych i ich udziału w projektach UE,
- przywrócenie Instytutowi prawa do nadawania stopni naukowych,
- zwiększenie liczby patentów międzynarodowych,
- przygotowanie i upowszechnienie licznych ofert technologicznych jako produktów rynkowych,
- większe zaangażowanie marketingu w rozwój nowych wyrobów i usług,
- badania marketingowego kapitału intelektualnego.

Polityka naukowo-badawcza winna okazać dużą elastyczność. Plany badawcze muszą uwzględniać zmieniające się potrzeby rynku i trendy w nauce światowej.

Ambitne plany muszą uwzględniać możliwości finansowe, kadrowe i czynniki zewnętrzne.

We wszystkich poczynaniach niech przyświeca starorzęmska zasada Ovidiusza

„Quidquid agis, prudenter agas at respice finem!”

Cokolwiek czynisz, czyń roztropnie i czekaj końca (efektów)
BIBLIOGRAFIA

Opracowania na temat Instytutu Przemysłu Fermentacyjnego i Instytutu Biotechnologii Przemysłu Rolno-Spożywczego:
2. Tadeusz Gołębiewski 1969, Instytut Przemysłu Fermentacyjnego w XXV-lecie PRL, Przemysł Fermentacyjny i Rolny 7-8,15
3. Tadeusz Gołębiewski 1975, XXV lat Instytutu Przemysłu Fermentacyjnego, Przemysł Fermentacyjny i Rolny 7,1.
4. Tadeusz Gołębiewski 1979, Instytut Przemysłu Fermentacyjnego w 30 rocznicę jego istnienia, Przemysł Fermentacyjny i Rolny 7,1.
9. Jubileuszowa Sesja Naukowa „Biotechnologia żywności pochodzenia roślinnego u progu XXI wieku”.
1952

Państwowa Nagroda Zespołowa III stopnia za pracę „Opracowanie i uruchomienie produkcji koncentratu witaminy C z owoców dzikiej róży w proszku – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1960

Nagroda Zespołowa Ministra Przemysłu Spożywczego i Skupu za pracę „Opracowanie i wdrożenie do produkcji ekstraktu kawy naturalnej Marago – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda Zespołowa Miasta Poznania i Województwa Poznańskiego w dziedzinie Postępu Technicznego za pracę „Opracowanie i wdrożenie do produkcji ekstraktu kawy naturalnej Marago – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1963

Nagroda Zespołowa Ministra Przemysłu Spożywczego i Skupu za pracę „Opracowanie technologii otrzymywania oczyszczonego enzymatycznego preparatu pektolitycznego z pleśni Aspergillus niger – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1964

Nagroda Zespołowa Ministra Przemysłu Spożywczego i Skupu za pracę „Uruchomienie produkcji kwasu glutaminowego” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.
STO LAT Instytutu

1966

Wyróżnienie na Międzynarodowej Wystawie Żywności SIAL w Paryżu za Pektopol i Kremogeny – Instytut Przemysłu Fermentacyjnego.

1968

Nagroda na Międzynarodowej Wystawie Żywności SIAL w Paryżu za Novit – Instytut Przemysłu Fermentacyjnego.

1969

Nagroda zespołowa Ministra Przemysłu Spożywczego i Skupu za pracę „Opracowanie nowej technologii produkcji wysoko jakościowej, sproszkowanej pektyny z wytłoków jabłkowych” – dr inż. Barbara Sewer-Lewandowska.

1970

Nagroda zespołowa IV stopnia w Krajowym Konkursie NOT za pracę „Poprawa jakości pektyny jabłkowej poprzez unowocześnienie technologii” – dr inż. Barbara Sewer-Lewandowska;

Czwarta Nagroda w Krajowym Konkursie „O jakość wyrobów przemysłu spożywczego” za pracę „Kadź fermentacyjna do drożdży z chłodnicą zewnętrzną – typ SK-71” – mgr inż. Mieczysław Skiba;

Nagroda II stopnia w konkursie pt. „O jakość wyrobów przemysłu spożywczego” za pracę „Otrzymywanie ekstraktów kawy zbożowej w proszku – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda II stopnia w konkursie pt. „O jakość wyrobów przemysłu spożywczego” za pracę „Opracowanie prototypów i wdrożenie do produkcji konserw dla niemowląt i dzieci” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda II stopnia w konkursie pt. „O jakość wyrobów przemysłu spożywczego” za pracę „Sposób otrzymywania nasion strączkowych o krótkim czasie gotowania z równoczesnym wzbogaceniem w białko” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;
Nagrody i wyróżnienia IBPRS

Nagroda V stopnia w konkursie pt. „O jakość wyrobów przemysłu spożywczego” za pracę Opracowanie optymalnych parametrów sterylizacji konserw dla dzieci – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda V stopnia w konkursie pt. „O jakość wyrobów przemysłu spożywczego” za pracę „Opracowanie technologii szybko gotującego się ryżu – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda V stopnia w konkursie pt. „O jakość wyrobów przemysłu spożywczego” za pracę „Opracowanie technologii wytwarzania zagęstnika skrobiowego, żelującego na zimno do celów spożywczych – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1971

Nagroda Zespołowa NOT I stopnia – Mistrz Techniki – za pracę „Opracowanie metody kondensacji aromatów owocowych” – mgr inż. Krystyna Karwowska, Jan Zalewski, Maria Borkowska, Konstanty Ziętkiewicz;

Nagroda Miasta Poznań i Województwa Poznańskiego za prace naukowo-badawcze i postęp techniczny – doc. dr W. Słowiński;

I Nagroda w Konkursie technicznym Gazety Poznańskiej „Złoty Suwak” za pracę „Kawa Inka” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1972

Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę „Otrzymywanie drożdży spożywczych” – mgr Olga Ilnicka-Olejniczak, mgr Maria Lipiec, dr inż. Wiesław Rzędowski;

I Nagroda zespołowa Ministra Przemysłu Spożywczego i Skupu za udział w realizacji pracy twórczej przy projekcie wynalazczym pt. „Ekstrakt kawy zbożowej w proszku uzyskany na drodze enzymatycznej” – dr inż. Wiesław Rzędowski;

I Nagroda na Resortowej Wystawie Projektów Wynalazczych Przemysłu Spożywczego za pracę „Kawa Inka” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda NOT za wybitne osiągnięcia w dziedzinie techniki – Wyróżnienie za pracę „Kawa Inka” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.
1973

Dyplom branżowego Wicemistrza Techniki 1973. mgr inż. Mieczysław Skiba

Nagroda V stopnia – Mistrz Techniki – mgr inż. Krystyna Karwowska, Konstanty Ziędkiewicz, Maria Borkowska;

Mistrz Techniki Resortu – za pracę „Kawa Inka” – Zdzisław Pazoła Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Wpis do Księgi Osiągnięć Nauki Polskiej na II Kongresie Nauki Polskiej za pracę „Opracowanie i uruchomienie produkcji glukozy krystalicznej metodą kwas-enzym” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

I miejsce na Sympozjum RWPG w Pradze za pracę „Rogout jarzynowo-mięsne w sosie pomidorowym” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

III miejsce na Sympozjum RWPG w Pradze za pracę „Wołowina z makaronem” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych, 1973 Praga;

IV Nagroda w Konkursie technicznym Gazety Poznańskiej „Złoty Suwak” za pracę „Odżywka Minimal” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1974

Nagroda Zespołowa NOT II stopnia – Mistrz Techniki – za pracę „Metoda fermentacji brzeczki i leżakowania piwa w układzie ciśnieniowym” – dr Władysław Dylkowski, dr Barbara Sielicka, mgr inż. Wiesława Komornicka, mgr Stefan Dulny, mgr Maria Brzozowska;

1975

Nagroda Ministra Leśnictwa za pracę „Zastosowanie nowego stymulatora ekstraktu drożdżowego w celu zwiększenia wydajności i globalnej ilości pozyskiwanej żywicy sosnowej” – dr Olga Ilnicka-Olejniczak, mgr Maria Lipiec;
Nagrody i wyróżnienia IBPRS

Nagroda w Konkursie technicznym Gazety Poznańskiej „Złoty Suwak” za pracę „Opracowanie technologii produkcji glukozy krystalicznej metodą enzym-enzym” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę „Opracowanie i wdrożenie technologii produkcji glukozy metodą enzym-enzym” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

II Nagroda w Konkursie technicznym Gazety Poznańskiej „Złoty Suwak” za pracę „Bebiko, Bebiko” 2 r i 2GR – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Srebrny medal na Targach Krajowych – Wiosna 75 za pracę „Bebiko, Bebiko 2 r i 2GR” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1976

Złoty Medal na Międzynarodowych Targach Lipskich za pracę „Kawa Inka” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

II Nagroda NOT za wybitne osiągnięcia w dziedzinie techniki za pracę „Bebiko, Bebiko 2 r i 2GR” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

I Nagroda w konkursie „Produkujemy dla rynku nowe wyroby – Merkury 75” za pracę „Bebiko, Bebiko 2 r i 2GR” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1977

Zespołowa Nagroda II stopnia NOT za wybitne osiągnięcia w dziedzinie techniki za pracę „Opracowanie i wdrożenie do produkcji nowej grupy wyrobów – „Galaretki Żella – owocowej błyskawicznej” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda II stopnia NOT za wybitne osiągnięcia w dziedzinie techniki – wyróżnienie za pracę „Opracowanie i zastosowanie nowej technologii prażenia zbóż do produkcji ekstraktów kawowych” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda Zespołowa w konkursie pt. „Stać nas na lepiej i więcej” za pracę „Śnieżka” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.
1978

Nagroda na Międzynarodowej Wystawie Żywności SIAL w Paryżu za granulaty warzywne – Instytut Przemysłu Fermentacyjnego;

Złoty Medal w konkursie pt. „Dobre – Ładne – Poszukiwane” za pracę „Bebiko, Bebiko 2 r i 2GR” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych 1978 Poznań;

Srebrny Medal w konkursie pt. „Dobre – Ładne – Poszukiwane” za pracę „Opracowanie i wdrożenie do produkcji nowej grupy wyrobów – Galaretki Żella – owocowej błyskawicznej” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Srebrny Medal w konkursie pt. „Dobre – Ładne – Poszukiwane” za pracę „Śnieżka” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda Zespołowa w konkursie pt. „Stać nas na lepiej i więcej” za pracę „Opracowanie nowych grup deserów” – CentralneLaboratorium Przemysłu Koncentratów Spożywczych.

1979

Złoty Medal w konkursie pt. „Dobre – Ładne – Poszukiwane” za pracę „Kleiki zbożowe /owsiany, ryżowy, gryczano-ryżowy/” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę „Opracowanie technologii wdrożenie do eksploatacji przemysłowej stacji kwasowej hydrolizy skrobi metodą ciągłą” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1980

Wyróżnienie w konkursie pt. „Złoty kasztan” za wysoką jakość i estetykę opakowań za pracę „Bebiko, Bebiko 2 r i 2GR” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Indywidualna Nagroda Wojewódzka – Młodych (woj. Poznańskie) za wybitne osiągnięcia w dziedzinie rolnictwa – mgr inż. Marian Remiszewski;
Nagrody i wyróżnienia IBPRS

Nagroda Ministra Przemysłu Spożywczego i Skupu za pracę badawczą „Sposób odzysku ciepła w procesie hydrolizy skrobi z zastosowaniem wody jako nośnika energii cieplnej” przedstawioną na XI sesji naukowej KCHiTŻ PAN –Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1981

Nagroda Wojewódzka NOT II stopnia (woj. poznańskie) za wybitne osiągnięcia w dziedzinie techniki za pracę „Opracowanie dokumentacji konstrukcyjnej urządzenia oraz opracowanie technologii estryfikacji skrobi w fazie fluidalnej” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Nagroda Ministra Rolnictwa i Gospodarki Żywnościowej za pracę doktorską pt. „Hydroliza enzymatyczna surowców i produktów skrobiowych” – dr inż. Marian Remiszewski;

Ministra Rolnictwa i Gospodarki Żywnościowej za pracę „Budowa stacji prażenia fluidalnego i badania procesu estryfikacji skrobi zachodzącego w fazie fluidalnej – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1982

1983

Nagroda Techniczna NOT II stopnia za wybitne osiągnięcia w dziedzinie techniki w roku 1983 – dr inż. Mieczysław Skiba;

Nagroda zespołowa II stopnia Wojewódzkiego Zarządu NOT w Opolu – mgr inż. Krystyna Krajewska;

Nagroda Zespołowa II stopnia Ministra Rolnictwa i Gospodarki Żywnościowej za pracę „Opracowanie technologii i wdrożenie do produkcji preparatu o smaku mięsa pieczonego” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.
STO LAT Instytutu

1984

Nagroda zespołowa II stopnia NOT za zastosowanie wysokogoryczkowego chmielu przy produkcji piwa – dr inż. Lucja Dubiel;

II Nagroda Ministerstwa Rolnictwa i Gospodarki Żywnościowej w konkursie „Zwiększamy produkcję i spożycie białka z nasion grochu i fasoli” za opracowanie nowego wyrobu – Krokiet z grochu – dr inż. Danuta Mączyńska, Leszek Leszczyński, mgr inż. Ewa Borowska, Helena Szwejk;

II Nagroda Ministra Rolnictwa i Gospodarki Żywnościowej w konkursie „Zwiększamy produkcję i spożycie białka z nasion grochu i fasoli” za opracowanie nowego wyrobu – Fasola z kurą w sosie złocistym – dr inż. Danuta Mączyńska, mgr inż. Janusz Lipowski, mgr inż. Ewa Borowska, Leszek Leszczyński, Helena Szwejk;

Wyróżnienie Ministra Rolnictwa i Gospodarki Żywnościowej w konkursie „Zwiększamy produkcję i spożycie białka z nasion grochu i fasoli” za opracowanie nowego wyrobu – czulent – Fasola w słonej zalewie – dr inż. Danuta Mączyńska, mgr inż. Krystyna Krajewska, Maria Borowska, Leszek Leszczyński, Helena Szwejk;

Nagroda WKTiR Leszno za zajęcie I miejsca w konkursie pod hasłem: Racjonalizatorzy realizują program oszczędnościowy za pracę „Kapitałooszczędny sposób produkcji zagęstników skrobiowych – Centralne Laboratorium Przemysłu Koncentratów Spożywczych, Leszno;

Nagroda Wojewódzka NOT I stopnia (woj. leszczyńskie) za wybitne osiągnięcia w dziedzinie techniki za pracę „Prototypowy oddział produkcji fosforanowych zagęstników skrobiowych” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych, Warszawa;

1985

Nagroda Zespołowa I stopnia Ministra Rolnictwa i Gospodarki Żywnościowej za pracę „Opracowanie i wdrożenie technologii produkcji odżywek sypkich dla niemowląt i dzieci” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych, Warszawa;
Nagrody i wyróżnienia IBPRS

Złoty Medal na Międzynarodowych Targach Poznańskich za pracę „Kaszki mleczne z owocami” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

II Nagroda na Międzynarodowych Targach „Omek 1985” za pracę „Kaszki mleczne z owocami” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

I Nagroda na Międzynarodowych Targach „Omek 1985” za pracę „Technologia otrzymywania żywności bezglutenowej. Budapeszt- Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Wyróżnienie na Międzynarodowych Targach „Ziemia Matka Żywieliu” za pracę „Technologia otrzymywania żywności bezglutenowej – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1986

Nagroda Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej I stopnia za udział w realizacji pracy „Opracowanie i wdrożenie technologii produkci grzybni pieczarek” – mgr Danuta Czajkowska;

Nagroda zespołowa Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej II stopnia za udział w realizacji pracy „Opracowanie i wdrożenie nowoczesnych opakowań szklanych do pakowania konserw w przemyśle” – dr inż. Teresa Dubiowska;

Nagroda zespołowa NOT II stopnia za wybitne osiągnięcia w dziedzinie techniki, za pracę „Opracowanie projektu wykonania i uruchomienia prototypowej linii do produkcji preparatów enzymatycznych o wydajności 100 t/rok” – dr inż. Wiesław Rzędowski, mgr Henryk Kluszczyk;

I Nagroda na Międzynarodowych Wiosennych Targach Lipskich za pracę „Opracowanie technologii i produkcji bezglutenowych koncentratów – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Złoty Medal na Międzynarodowych Wiosennych Targach Lipskich za pracę „Bezglutenowe konserwy dla niemowląt – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

Państwowa Nagroda Zespołowa II stopnia w dziedzinie techniki za pracę „Opracowanie technologii i uruchomienie produkcji żywności dla niemowląt i dzieci” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych;

STO LAT Instytutu

1987

Nagroda zespołowa Przew. Komitetu ds. Nauki i Postępu Technicznego za szczególne osiągnięcia w dziedzinie nauki i wdrażania postępu naukowo-technicznego, za udział w realizacji tematu „Opracowanie technologii, wykonanie prototypowej linii produkcynnej oraz uruchomienie produkcji enzymatycznych preparatów pektynolitycznych z zastosowaniem grubowarstwowej metody hodowli drobnoustrojów” – dr inż. Wiesław Rzędowski, mgr Henryk Kluszczycy;

Nagroda Wojewódzka NOT – zespołowa – II stopnia za opracowanie i wdrożenie technologii „Wzbogacania wywaru gorzelniczego w białko i suchą masę oraz określenie jego efektywności w tuczu trzody chlewnej” – dr inż. Stanisław Łabendziński, dr inż. Bogdan Łączyński, dr inż. Stefan Górný, Jerzy Olszewski;

Nagroda Komitetu Technologii i Chemii Żywności PAN za pracę „Wpływ środowiska na zawartość kadmu i ołowiu w malinach” – dr Barbara Szteke, mgr inż. Renata Jędrejczak;

1988

Nagroda Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej II stopnia za pracę „Opracowanie i wdrożenie technologii otrzymywania bakteryjnego preparatu proteolitycznego Proteopol BP” – dr Regina Sawicka-Żukowska, dr inż. Antoni Zakrzewski, prof. dr Wiesław Rzędowski, dr Janina Malanowska, dr inż. Grażyna Kostka, mgr Bogna Rycerska;

Wyróżnienie Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za pracę doktorską „Wybrane właściwości fizyczne i chemiczne podłoża hodowlanego Aspergillus awamori NRRL 3112 jako podstawa intensyfikacji syntezy glukoamylazy” – dr inż. Grażyna Kostka;

Wyróżnienie Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za pracę „Rozpoznanie problemu zanieczyszczenia kadmem przetworów dla dzieci i wskazanie kierunków obniżenia poziomu tego zanieczyszczenia” – dr Barbara Szteke, mgr inż. Renata Jędrejczak;
Wyróżnienie Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za pracę doktorską „Opracowanie metod izolacji związków smakowo-zapachowych niektórych przypraw” – dr Ewa Kostrzewa;

Nagroda Wojewódzka NOT II stopnia za wybitne osiągnięcia w dziedzinie techniki za pracę „Nowa technologii produkcji syropów skrobiowych metodą ciągłą” – Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

1989

Wyróżnienie za nowatorskie opracowania technologii nowych wyrobów spożywczych – Komitet organizacyjny V Krajowych Targów Zdrowej Żywności Tarnów’89 – Zakład Technologii Przetworów Owocowych i Warzywnych IBPRS;

Nagroda II stopnia Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za pracę „Opracowanie metod wykrywania i oznaczania aflatoksyn B₁, B₂, G₁, G₂, M₁, ochratoksyny A, sterygmatocystyny i zearalenonu w produktach zbożowo-mlecznych i zbożowych przeznaczonych dla niemowląt” – dr Ludwik Czerwiecki, mgr Hanna Giryn, Zofia Gruszczyńska, Krystyna Klimczak;

Wyróżnienie Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za pracę habilitacyjną „Studia nad intensyfikacją fermentacji octowej” – dr hab. Jerzy Czuba;

Wyróżnienie Ministra Rolnictwa, Leśnictwa i Gospodarki Żywnościowej za pracę doktorską „Hydroliza enzymatyczna materiałów celulozowych do produktów ulegających fermentacji etanolowej” – dr inż. Andrzej Jarosz;

Nagroda zespołowa za pracę „Opracowanie i wdrożenie do produkcji nowych korków klejonych (suberytowych) i zastosowanie do pakowania win gronowych” – dr Teresa Dubetowska;

1990

Nagroda II stopnia Ministra Rolnictwa Leśnictwa i Gospodarki Żywnościowej za pracę „Opracowanie technologii produkcji i stosowania krajowego preparatu obniżającego lepkość cukrzyc w procesie krystalizacji i wirowania cukru” – dr Halina Gruszecka, dr inż. Edmund Waleriańczyk, Gabriela Ciużeńska;

Wyróżnienie na VIII Krajowych Targach Zdrowej Żywności w Tarnowie za grupę wyrobów prozdrowotnych obejmującą niskoenergetyczne sosy warzywne mające za stosowanie w dietach profilaktycznych dla osób zagrożonych zaburzeniami metaboliczynymi – dr inż. Lubomiła Owczarek, mgr inż. Urszula Jasińska.

1993

Nagroda I stopnia Ministra Rolnictwa i Gospodarki Żywnościowej za pracę „Otrzymanie i wdrożenie do praktyki przemysłowej nowych szczepów drożdży piekarskich” – dr inż. Krystyna M. Stecka;

Nagroda II stopnia Ministra Rolnictwa i Gospodarki Żywnościowej za pracę „Wykorzystanie biogazu uzyskiwanego w procesie fermentacji metanowej ścieków cukrowniczych do wytwarzania energii elektrycznej” – dr Bożenna Poleć, doc. dr hab. Tomasz Wolski, dr inż. Józef Marczyński;

Nagroda II stopnia Ministra Rolnictwa i Gospodarki Żywnościowej za pracę „Dobór mieszanek herbicydowych i ich stosowanie metodą dawek dzielonych do zwalczania chwastów na plantacjach buraczanych” – dr Jolanta Kositorna, inż. Marek Smoliński, Teresa Pastusińska, Wiesława Cisowska-Kołodziej;

1994

Nagroda II stopnia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa za pracę „Doskonalenie procesu oczyszczania ścieków cukrowniczych z za-
stosowaniem metody intensywnej fermentacji metanowej” – dr Bożenna Poleć, doc. dr inż. Tomasz Wolksi, mgr inż. Anna Tomaszewska;

1995

Nagroda Fundacji Nauki Polskiej dla laureata konkursu w ramach programu „BITECH”, na zakup fermentora laboratoryjnego Biostat C firmy B. Braun, Zakład Technologii Spirytusu i Drożdży;

Nagroda II stopnia Ministra Gospodarki Przestrzennej i Budownictwa za pracę „Opracowanie i wdrożenie do stosowania projektu reaktora beztlenowego” – dr Bożenna Poleć;

Nagroda I stopnia Ministra Rolnictwa i Gospodarki Żywnościowej za realizację pracy „Opracowanie i wdrożenie nowej technologii otrzymywania płatków owsiennych” – Centralne Laboratorium Technologii Przetwórstwa i Przechowalnictwa Zboż.

1996

Nagroda Ministra Rolnictwa i Gospodarki Żywnościowej za pracę z zakresu technologii i nauki o żywności za plakat pt.: „Wpływ wybranych polisacharydów na efektywność lisy drożdży piekarskich” – dr Antonina Komorowska, mgr Ewa Mrówka, dr inż. Krystyna M. Stecka, prof. dr hab. Roman A. Grzybowski;

Nagroda Stowarzyszenia Inżynierów i Techników Przemysłu Spożywczego za pracę: „Porównanie metod oznaczania kwasowości i zawartości estrów w spirytusach metodami zgodnymi z ISO i według PAN” – dr inż. Janusz Milewski, inż. Teresa Zalewska, mgr Elżbieta Rzepka;

Nagroda II stopnia Ministra Rolnictwa i Gospodarki Żywnościowej za realizację pracy „Opracowanie programów kalibracyjnych dla urządzeń analitycznych wykorzystujących technikę „NIR” i ich wdrożenie w zakładach zbożowo-młynarskich” –
mgr inż. Jadwiga Rothkaehl, mgr inż. Wojciech Górniak, mgr inż. Danuta Abramczyk,
 mgr inż. Robert Pec, Ewa Jastrzębska, Anna Siennicka;

Wyróżnienie w konkursie XXVII Sesji Komitetu Technologii i Chemii Żywności
PAN za pracę – „Wpływ ilości tlenu rozpuszczonego i temperatury fermentacji na
poziom związków karbonylowych w spirytusie surowym” – dr inż. Krystyna M. Stecka,
mgr inż. Antoni Miecznikowski;

Wyróżnienie w konkursie XXVII Sesji Komitetu Technologii i Chemii Żywności
PAN za pracę – „Pszenżyto jako surowiec dla przemysłu gorzelniczego” – dr inż. Krystyna M. Stecka,
mgr Elżbieta Rzepka, mgr inż. Elżbieta Badocha;

Wyróżnienie w konkursie XXVII Sesji Komitetu Technologii i Chemii Żywności
PAN za pracę – „Ocet zafałszowany – badanie rynku” – doc. dr hab. Jerzy Czuba,
inż. Irena Sikorska, mgr inż. Maria Spera.

1997

Wyróżnienie w Wielkim Konkursie Wynalazczym w dziedzinie ochrony środowiska,
organizowanym przez Ministerstwo Ochrony Środowiska, Zasobów Naturalnych i Leśnych, Komitet Badań Naukowych, Stowarzyszenie Polskich Wynalazców

Wyróżnienie na XXVII Sesji Naukowej KTiChŻ PAN, za plakat „Wpływ preparatu enzymatycznego Flavourzyme na własności funkcjonalne białek drożdży piwowarskich” – dr Antonina Komorowska, mgr Ewa Mrówka, dr inż. Krystyna M. Stecka;

Wyróżnienie na XXVII Sesji Naukowej KTiChŻ PAN za plakat „Wpływ wysokich ciśnień na enzymy proteolityczne” – mgr inż. Joanna Rozmierska, P. Kolakowski, A. Polak;

mgr inż. Ewa Szalkucka;

Nagrody i wyróżnienia IBPRS

1998

Certificate of Appreciation from United States Department of Agriculture przyznany za realizację grantu „Stosowanie i rola biopreparatów w konserwowaniu pasz i żywieniu zwierząt”, w ramach Bridges From Science to Practice, finansowanego przez Ambasadę USA. dr inż. Krystyna Zielińska;

1999

**Wyróżnienie posteru pt.: „Development of hypo-and isotonic fruit drinks”, jako jednego z 10 najlepszych posterów prezentowanych na Międzynarodowym Sympo-
zjum Sokowniczym Juice’99 nt.: „Soki owocowe i warzywne – dziś i w XXI wieku”,
Rytro – dr inż. Lubomiła Owczarek., mgr inż. Urszula Jasińska, dr Renata Jędrzejczak
doc. dr inż. D. Mączyńska;
Laureat Konkursu „Polski Produkt Przyszłości” Agencji Techniki i Technologii
za pracę „Sposób wytwarzania makaronu instant” – Centralne Laboratorium Przemysłu
Koncentratów Spożywczych.

2000

Puchar Rektora Wyższej Szkoły Humanistyczno-Ekonomicznej w Łodzi INTR-

2001

Nagroda Ministra Rolnictwa i Rozwoju Wsi za osiągnięcia w zakresie wdrażania
postępu w rolnictwie, rozwoju wsi i rynkach rolnych za „Opracowanie technologii
ciągłej sterylizacji (dekontaminacji) przypraw oraz urządzenia do ciągłej sterylizacji”
– Centralne Laboratorium Przemysłu Koncentratów Spożywczych.

2002

Medal na Targach Innowacji Gospodarczych i Naukowych INTARG Katowice za
rozwiązanie innowacyjne „Biopreparaty: probiotyczne, do zakiszania pasz i ekstrakty
drożdżowe” – prof. dr hab. Roman A. Grzybowski, dr inż. Krystyna M. Stecka,
dr inż. Krystyna Zielińska, dr inż. Janusz Milewski, dr Antonina Komorowska,
mgr inż. Antoni Miecznikowski, mgr Ewa Mrówka;
Wyróżnienie przyznane przez Wydział Nauk o Żywności Uniwersytetu Warmińsko-
Mazurskiego za pracę doktorską pt.: „Badania nad zastosowaniem nowoczesnych
metod w prowadzeniu kolekcji kultur” – mgr Anna Misiewicz;
Dyplom przyznany z okazji 10-lecia firmy bioMerieux za wspieranie działań
edukacyjnych w zakresie mikrobiologii przemysłowej dla doc. dr hab. Danuty Czaj-
kowskiej.
Nagrody i wyróżnienia IBPRS

2003

Medal Jubileuszowy za współpracę z Instytutem Melioracji i Użytków Zielonych w Falentach z okazji 50-lecia IMUZU – dr inż. Krystyna Zielińska;

Medal okolicznościowy z okazji „X lat Krajowej Unii Producentów Soków i Napojów Bezalkoholowych” wraz z podziękowaniem za pracę społeczną na rzecz organizacji – prof. dr hab. Roman A. Grzybowski;

Medal okolicznościowy z okazji „X lat Krajowej Unii Producentów Soków i Napojów Bezalkoholowych” wraz z podziękowaniem za pracę społeczną na rzecz organizacji – dr inż. Aleksander Jakubowski;

2004

Nagroda Specjalna Małejgjiego Stowarzyszenia Wynalazków na 32 Światowym Salonie Wynalazków, Nowych Technologii i Produktów Genewa za pracę

2005

2006

Złoty medal na 55. Światowej Wystawie Innowacji, Badań Naukowych i Nowoczesnej Techniki, „Brussels-Eureka’2006” Bruxesla za „Sposób produkcji bezpiecz-
Nagrody i wyróżnienia IBPRS

Nagrodę Ministra Edukacji i Nauki za międzynarodowe osiągnięcia wynalazcze – XIII Giełda Wynalazków wyróżnionych na światowych wystawach innowacji,

Dyplom uznania za produkty o najwyższej jakości oraz statuetkę „Róg obfitości” na XIV Wystawie „Krajowy Produkt – Przyszłością Polski” Warszawa organizowanej
Nagrody i wyróżnienia IBPRS

2007

STO LAT Instytutu

Nagrody i wyróżnienia IBPRS

ski, mgr Zbigniew Liszkowski, inż. Eugeniusz Korbas, inż. Ireneusz Płowens, Robert Marcinkiewicz, Piotr Łyskawa;

Nagrody i wyróżnienia IBPRS

2008

Srebrny Medal na IV Międzynarodowych Targach Wynalazków Seul za pracę „Sposób obniżenia zawartości aflatoksyn w kiszonych paszach objętościowych” –
Nagrody i wyróżnienia IBPRS

2009

Nagroda I stopnia na IV Międzynarodowej Konferencji z cyklu „Quality and safety in food production chain” Wrocław za doniesienie pt. „Impact of μ-calpain gene
STO LAT Instytutu

Dyplom Ministra Nauki i Szkolnictwa Wyższego za pracę „Technologia wytwarzania bez tłuszczowych makaronów instant” – mgr inż. Ryszard Przygodzki, inż. Eugeniusz Korbas, doc. dr inż. Marian Remiszewski;

Nagrody i wyróżnienia IBPRS

2010

Dyplom Ministra Nauki i Szkolnictwa Wyższego za projekt pod nazwą „Bez cukrowe koncentraty ciast i deserów w proszku” – dr inż. Marian Remiszewski, prof. IBPRS, mgr Iwona Błasińska, mgr inż. Maria Jeżewska, dr inż. Małgorzata Kulczak;

List gratulacyjny Ministra Nauki i Szkolnictwa Wyższego za projekt pod nazwą „Technologia otrzymywania uniwersalnego nośnika i wypełniacza produktów spożywczych” – prof. dr hab. Lucyna. Slomińska, dr inż. Leszek Jarosławski, mgr inż. Roman Zielonka;

List gratulacyjny Ministra Nauki i Szkolnictwa Wyższego za projekt pod nazwą „Bez cukrowe koncentraty ciast i deserów w proszku” – mgr Iwona Błasińska, mgr inż. Maria Jeżewska, dr inż. Małgorzata Kulczak, dr inż. Marian Remiszewski, prof. IBPRS;

Tytuł EURO LEADER i LIDER RYNKU – Najlepszy w Polsce Produkt w kategorii „Produkt” za „Grupę biopreparatów do kiszenia pasz i probiotycznych” – Zakład Technologii Fermentacji;

Tytuł EURO LEADER i LIDER RYNKU w kategorii „Firma”, w zakresie prowadzenia prac naukowych rozwojowych wdrożeniowych obejmujących biotechnologię i technologię rolno-spożywcą – IBPRS;

II miejsce w konkursie Mazowiecka Firma Roku 2010 w kategorii „Instytut, Jednostka Badawczo-Rozwojowa” – IBPRS;

IV miejsce w rankingu Gazele Biznesu 2010 – IBPRS.

2011

Dyplom Tajwańskiego Zrzeszenia Wynalazców na Międzynarodowej Wystawie Wynalazków IENA Norymberga za pracę „Wieloskładnikowe piekarskie kultury star-

Tytuł EURO LEADER i LIDER RYNKU – Najlepszy w Polsce Produkt w kategorii „Produkt” za „Grupę biopreparatów do kiszenia pasz i probiotycznych” – Zakład Technologii Fermentacji;

Tytuł EURO LEADER i LIDER RYNKU w kategorii „Firma”, w zakresie prowadzenia prac naukowych rozwojowych wdrożeniowych obejmujących biotechnologię i technologię rolnoo-spożywcą – IBPRS;

Statuetka i Dyplom Ministra Nauki i Szkolnictwa Wyższego za projekt „Bezczekowe koncentraty ciast i deserów w proszku” – mgr Iwona Błasińska, mgr inż. Maria Jeżewska, dr inż. Małgorzata Kulczak, dr inż. Marian Remiszewski, prof. IBPRS;

Dyplom Ministra Nauki i Szkolnictwa Wyższego za projekt „Technologia otrzymywania uniwersalnego nośnika i wypełniciu produktów spożywczych” – prof. dr hab. Lucyna Słomińska, dr inż. Leszek Jarosławski, mgr inż. Roman Zielonka;

STO LAT Instytutu

Dyplom dla prof. dr hab. Romana A. Grzybowskiego w uznaniu za wkład w kształtowaniu postaw projakościowych oraz dobrych praktyk w zarządzaniu, Polskie Centrum Badań i Certyfikacji, Warszawa;

Certyfikat Wiarygodności Biznesowej nadawany za wysoki ocenę stabilności firmy w roku 2010 według D&B Poland – IBPRS;

IV miejsce w Rankingu Gazele Biznesu 2010 – IBPRS;

Partner Strategiczny Konkursu Gazele Biznesu 2010, gratulacje dla IBPRS od Kredyt Bank, za przynależność do grona Gazele Biznesu 2010;

2012

Gazele Biznesu – potwierdzenie przynależności IBPRS do klubu grona najdynamiczniej rozwijających się firm.